The evolution of tracking technology for wild giraffe (*Giraffa* spp.)

Courtney J. Marneweck^{1*}()[§], Michael B. Brown¹(), Stephanie Fennessy¹(), Sara Ferguson¹(), Rigardt Hoffman^{1,2}, Arthur B. Muneza¹() &

Julian Fennessy^{1,3}(D)

¹Giraffe Conservation Foundation, Windhoek, Namibia ²School of Biology and Environmental Sciences, University of Mpumalanga, Mbombela, South Africa ³School of Biology and Environmental Science, University College Dublin, Ireland

Received 28 September 2023. To authors for revision 14 November 2023. Accepted 4 March 2024

The use of telemetry for animal tracking studies has been a key component of wildlife research and monitoring for decades. The unique anatomy of giraffe, however, has presented special challenges for developing functional animal-borne tracking devices for these species. Since the first reported collaring of a giraffe in 1970, several modifications (from neck collars to ear tags, and head harnesses to tail units) and technological developments (Very High Frequency [VHF] to Ultra High Frequency [UHF], Global System for Mobile communication [GSM], and Low Range [LoRa] to Global Positioning System [GPS] satellite) have taken place. Here, we describe the evolution of tracking units used on giraffe and, where available, report their performance diagnostics, highlighting the applicability of such units for modern-day tracking studies with both improved data quality and improved animal welfare. Based on the data gathered, we make recommendations about which modern-day units to use regarding research and management goals.

Keywords: collar, GPS, megaherbivore, tag, telemetry, VHF.

INTRODUCTION

Animal tracking studies are critical to ecological research and conservation management. As such, wildlife veterinarians, scientists and managers have deployed animal-borne tracking devices for decades, with more recent advances in technology making the practice widely accessible and the information collected highly valuable. These highresolution spatiotemporal data enable monitoring of individuals and entire populations, as well as answering a wide range of questions relating to movement ecology, for example, how species interact, make foraging decisions, and where and when they migrate (Owen-Smith, 2014; Seidel, Dougherty, Carlson & Getz, 2018; Broekhuis, Madsen, Keiwua & Macdonald, 2019; Dickie, McNay, Sutherland, Cody & Avgar, 2020; Davies et al., 2021; Ranc, Moorcroft, Ossi & Cagnacci, 2021). These data are also increasingly valuable for addressing specific conservation management issues related to the rapid processing of real-time

locational data (Kays, Crofoot, Jetz & Wikelski, 2015; Katzner & Arlettaz, 2020).

Among the large African mammals, giraffe (Giraffa spp.) are notably understudied despite recent reports of declining populations (Muller et al., 2018; Brown et al., 2021). Populations of several (sub)species are extremely fragmented, and four taxa are listed as either Endangered (Masai giraffe, G. tippelskirchi tippelskirchi (Bolger et al., 2019); Reticulated giraffe, G. reticulata (Muneza et al., 2018)) or Critically Endangered (Nubian giraffe, G. camelopardalis camelopardalis (Wube, Doherty, Fennessy & Marais, 2018); Kordofan giraffe, G. c. antiquorum (Fennessy & Marais, 2018)) on the IUCN Red List. Amongst their greatest threats are habitat loss and fragmentation, therefore understanding the spatial ecology of giraffe is crucial to their long-term conservation and management.

The first animal-borne tracking units for mammals were deployed in the early 1960s (reviewed by Adams, 1965), mostly as neck collars or harnesses, which have since become the conventional attachment method. However, the unique anatomy of giraffe, with their long necks, presents chal-

^{*}To whom correspondence should be addressed. E-mail: courtney@giraffeconservation.org

lenges for affixing these traditional designs. The first recorded neck collaring of a giraffe was in 1970 (Foster & Dagg, 1972) and the design was subsequently adapted several times before it was determined that giraffe anatomy did not lend itself to this method of attachment (Fennessy, 2004; Hart, Fennessy, Rasmussen, *et al.*, 2020). Yet, other aspects of giraffe morphology have allowed for innovative trials. While their large body size enables them to carry large Global Positioning System (GPS) units with heavier batteries, technology advances and solar-powered options have facilitated more compact and lightweight solutions.

Today, high-resolution spatiotemporal data from tracking units can be paired with environmental variables for robust and high-impact analyses (e.g. Kays et al., 2015; Brown et al., 2023). Here we describe the evolution of telemetry techniques used in monitoring giraffe populations over time. These advances in radiotelemetry and GPS satellite tracking technology have allowed researchers to document and understand the interactions of giraffe with their environments, which is crucial to their conservation and management in a constantly changing landscape. The desire for reliable and functional tracking units that are also small and lightweight with minimal impact on animal welfare remains a priority, and we hope that this review will contribute to improving this for giraffe as well as other animals.

METHODS

In this review, we document the evolution of tracking units used on giraffe from the 1970s to today. First, to obtain any published information on giraffe tracking units and their performance, we conducted a Web of Science literature search using the terms: ('giraffe' OR 'giraffa') AND ('tracking' OR 'VHF' OR 'GPS' OR 'GSM' OR 'UHF' OR 'LoRa' OR 'UTM' OR 'collar' OR 'tag' OR 'movement' OR 'spatial'). This search yielded 153 results (for the full exported list, see Supplementary Table S1) but after an initial review to remove irrelevant publications (i.e. those not including giraffe fitted with a GPS tracking unit), only 21 relevant publications remained (Table 1). We added additional relevant publications/reports that were known to us but missed in the literature search (noted in Table 1 with a ^). For each publication, we attempted to extract the following information: number of units deployed (n), scheduled fix rate (number of programmed GPS locations per day),

achieved fix rate (number of recorded GPS locations per day), and deployment length (number of days the unit was active on a giraffe). Where possible, we also calculated the fix success rate (number of recorded fixes divided by the number of scheduled fixes) and deployment success rate (number of active deployed days divided by the expected number of days based on general manufacturer guidelines) for comparison across units. It is noted that some fix success rates are >1.00 (Table 1), which is possible as some units sent more data than scheduled. While this may appear positive, it can have implications on battery life. It is important to note that we report deployment length (days) as starting at the time the unit was affixed to a giraffe and not as the total unit lifespan from the date it was switched on. This information was unavailable for many units and was thus not included. All units were switched on for a trial period before deployment to check performance, and it is common for delays in obtaining permits and field logistics to prolong the deployment date. As such, the length of time that a unit was online and transmitting but not yet deployed on an animal can vary considerably.

Between 2011 and 2023, the Giraffe Conservation Foundation (GCF) and partners fitted 523 GPS tracking units in collaborative projects throughout Africa. Many of these units are described in publications highlighted by our literature search. However, we report the summary metrics described above for all 523 units as several units persist outside published study date ranges or have not yet been published. For units with data wholly/partly included in published literature, we note the relevant publication(s) in the text and Table 1. For all summary statistics, we report both the mean and the standard error. Where we estimated a metric due to insufficient detail reported, we note that with an * in Table 1. We have referred to each tracking unit chronologically (version 1.0, 1.1, 2.0 etc.), but this does not mean that they were developed sequentially or in parallel, as several units were developed independently by different manufacturers. We used data from a period of 12 years (October 2011 to December 2023). If the unit was still active at the time of writing, we assumed the deployment end date as the day of the data extraction (14 December 2023).

The GCF and its partners obtained all necessary permits and Institutional Animal Care and Use Committee approvals for the fitment of tracking

Table 1 . Summa bold. Unk, unkno	ry of the I own; NA,	performan , not availa	ce of track able.	ting units a	affixed to gin	affe over tii	ne. Those with	ו a fix succes	s rate ≥0.90 a	and deployme	ent success I	rate ≥0.7 are highlighted in
Unit type, version	Unit weight (g)	Deployed country	Deployed units (n)	Fix schedule (per day)	Fix achieved (mean/day)	Fix achieved (S.E./day)	Fix success rate	Deployment expected (days)	Deployment length (mean days)	Deployment length (S.E.)	Deployment success rate	Citation(s)
Neck collar 1.0	Unk	KEN		NA	NA	NA	NA	Unk	63.00	Unk	Unk	Foster & Dagg (1972) ∽
Neck collar 1.0	3 500	ZAF	7	NA	NA	NA	NA	Unk	255.00	Unk	Unk	Langman (1973) ^
Neck collar 2.0	Unk	ZAF	S	NA	NA	NA	NA	Unk	810.00	Unk	Unk	du Toit (1990) ∽
Neck collar 3.0	006	NAM	4	с	Unk	Unk	Unk	Unk	105.00	Unk	Unk	Fennessy (2004 $^{\sim}$, 2009)
Neck collar 3.1	Unk	NAM	4	48	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Guillemin, V., pers. comm.
Neck collar 3.2	10 000	NER	8	24	8.33	Unk	Unk	Unk	90.00	Unk	Unk	Suraud (2011) ^ *
Neck collar 4.0	635	ZAF	÷	NA	NA	NA	NA	Unk	45.00	Unk	Unk	Deacon (2015) ^
Neck collar 3.3	Unk	ZAF	2	24	2.67	1.08	0.11	730	2.00	00.0	0.00	Marneweck et al. (this study)
Head harness 1.0	Unk	NAM	2	NA	NA	NA	NA	Unk	Unk	Unk	Unk	Scheepers (1992) ~
Head harness 1.1	Nuk	KEN	က	NA	NA	NA	NA	Unk	135.00	Unk	Unk	King (2009)
Head harness 1.2	670	ZAF	ω	Q	5.46	0.43	0.91	Unk	613.00	Unk	Unk	Deacon (2015) *; Deacon & Smit (2017) *; Deacon <i>et al.</i> (2023a); Deacon <i>et al.</i> (2023b)
Head harness 1.2	670	BWA	4	9	4.86	0.78	0.81	730	181.50	29.65	0.25	Broekman <i>et al.</i> (2022); Brown <i>et al.</i> (2023); McQualter <i>et al.</i> (2016)
Head harness 1.2	670	NAM	9	24	7.88	0.42	0.33	730	225.89	37.83	0.31	Brown <i>et al.</i> (2023); Flanagan <i>et al.</i> (2016)
Head harness 1.2	670	COD	œ	က	3.22	0.17	1.07	730	177.75	40.14	0.24	D'haen <i>et al.</i> (2018); Marneweck <i>et al.</i> (this study)
Head harness 1.2	670	NAM	7	9	6.31	0.28	1.06	730	234.50	80.25	0.32	Broekman <i>et al.</i> (2022); Marneweck <i>et al.</i> (this study)
Head harness 1.2	670	ETH	ი	ო	2.77	0.02	0.93	730	380.00	44.64	0.52	Broekman <i>et al.</i> (2022); Brown <i>et al.</i> (2023); Marneweck <i>et al.</i> (this study)
Head harness 1.2	670	UGA	Ŋ	24	23.87	2.31	0.99	730	97.60	13.96	0.13	Broekman <i>et al.</i> (2022); Brown <i>et al.</i> (2023); Marneweck <i>et al.</i> (this study); 0'Connor <i>et al.</i> (2019)

48

African Journal of Wildlife Research Vol. 54, 2024

Continued on p. 49

Table 1 (continue	ed)											
Unit type, version	Unit weight (g)	Deployed country	Deployed units (n)	Fix schedule (per day)	Fix achieved (mean/day)	Fix achieved (S.E./day)	Fix success rate	Deployment expected (days)	Deployment length (mean days)	Deployment length (S.E.)	Deployment success rate	Citation(s)
Head harness 1.2	670	ZWE	5	ς	5.15	0.30	1.72	730	152.50	63.99	0.21	Broekman <i>et al.</i> (2022); Brown <i>et al.</i> (2023); Marneweck <i>et al.</i> (this study)
Head harness 1.2	670	ZAF	7	24	18.92	Unk	0.79	Unk	255.00	Unk	Unk	Scheijen (2021)*
Head harness 2.0	962	CAN	2	NA	NA	NA	NA	Unk	15.50	Unk	Unk	Brandes <i>et al.</i> (2021)
Head harness 2.0	423	DEU	-	NA	NA	NA	NA	Unk	15.50	Unk	Unk	Brandes <i>et al.</i> (2021)
Ankle bracelet 1.0	Unk	U.S.A.	4	NA	NA	NA	NA	Unk	Unk	Unk	Unk	Razal (2016)
Ankle bracelet 2.0	Unk	ZAF	2	24	19.12	0.45	0.80	730	123.00	36.06	0.17	Marneweck et al. (this study)
Ossi unit 1.0	180	COD	4	24	13.76	1.80	0.57	730	316.00	94.66	0.43	Broekman <i>et al.</i> (2022); Brown <i>et al.</i> (2023); Marneweck <i>et al.</i> (this study); Tucker <i>et al.</i> (2023)
Ossi unit 1.0	180	KEN	48	24	22.82	0.26	0.95	730	235.83	29.74	0.32	Broekman <i>et al.</i> (2022); Brown <i>et al.</i> (2023); Crego <i>et al.</i> (2021); Crego <i>et al.</i> (2023); Hart <i>et al.</i> (2020b); Marneweck <i>et al.</i> (this study); Tucker <i>et al.</i> (2023)
Ossi unit 1.0	180	NAM	40	24	23.37	0.17	0.97	730	904.85	90.42	1.24	Broekman <i>et al.</i> (2022); Brown <i>et al.</i> (2023); Hart <i>et al.</i> (2020a); Hart <i>et al.</i> (2020b); Marneweck <i>et al.</i> (this study); Tucker <i>et al.</i> (2023)
Ossi unit 1.0	180	NAM	-	48	46.61	0.43	0.97	730	184.00	571.87	0.25	Marneweck et al. (this study)
Ossi unit 1.0	180	NAM	-	144	140.63	0.57	0.98	730	1008.00	571.87	1.38	Marneweck et al. (this study)
Ossi unit 1.0	180	NER	19	24	23.20	0.39	0.97	730	320.11	64.71	0.44	Broekman <i>et al.</i> (2022); Brown <i>et al.</i> (2023); Marneweck <i>et al.</i> (this study); O'Connor <i>et al.</i> (2019); Tucker <i>et al.</i> (2023)

Marneweck et al.: The evolution of tracking technology for wild giraffe

Continued on p. 50

49

Table 1 (continu	ed)											
Unit type, version	Unit weight (g)	Deployed country	Deployed units (n)	Fix schedule (per day)	Fix achieved (mean/day)	Fix achieved (S.E./day)	Fix success rate	Deployment expected (days)	Deployment length (mean days)	Deployment length (S.E.)	Deployment success rate	Citation(s)
Ossi unit 1.0	180	TCD	17	24	21.95	0.24	0.91	730	382.76	27.22	0.52	Broekman <i>et al.</i> (2022); Brown <i>et al.</i> (2023); Marneweck <i>et al.</i> (this study); Tucker <i>et al.</i> (2023)
Ossi unit 1.0	180	TZA	÷	24	22.75	0.09	0.95	730	296.27	50.39	0.41	Broekman <i>et al.</i> (2022); Brown <i>et al.</i> (2023); Marneweck <i>et al.</i> (this study); Tucker <i>et al.</i> (2023)
Ossi unit 1.0	180	UGA	20	24	22.73	0.41	0.95	082	340.44	46.68	0.47	Broekman <i>et al.</i> (2022); Brown & Bolger (2020); Brown <i>et al.</i> (2023); Hart <i>et al.</i> (20230); Marneweck <i>et al.</i> (this study); O'Connor <i>et al.</i> (2019); Tucker <i>et al.</i> (2023)
Ossi unit 1.0	180	ZWE	12	24	22.33	0.39	0.93	730	286.25	53.68	0.39	Broekman <i>et al.</i> (2022); Brown <i>et al.</i> (2023); Marneweck <i>et al.</i> (this study); Tucker <i>et al.</i> (2023)
Ossi unit 1.1	110	NAM	2	24	20.95	0.43	0.87	730	144.50	58.34	0.20	Marneweck <i>et al.</i> (this study)
Ossi unit 1.1	110	UGA	7	24	22.57	0.22	0.94	730	308.86	47.86	0.42	Brown <i>et al.</i> (2023); Marneweck <i>et al.</i> (this study); Tucker <i>et al.</i> (2023)
Ossi unit 1.2	100	NAM	9	24	22.41	1.40	0.94	730	669.50	126.16	0.92	Brown <i>et al.</i> (2023); Marneweck <i>et al.</i> (this study)
Ossi unit 2.0	Unk	ZAF	2	24	23.16	0.28	0.97	730	149.50	35.71	0.20	Marneweck <i>et al.</i> (this study)
Tail unit 1.0	135	ZAF	2	24	17.40	2.37	0.73	730	7.00	1.41	0.01	Marneweck <i>et al.</i> (this study)
Tail unit 2.0	Unk	IMM	2	4	3.01	0.07	0.76	730	387.50	6.72	0.53	Marneweck et al. (this study)
Tail unit 3.0	100	KEN	80	96	59.89	2.34	0.63	730	217.63	29.98	0.30	Marneweck et al. (this study)
Tail unit 3.0	100	KEN	35	24	17.37	0.88	0.72	730	73.43	14.33	0.10	Marneweck et al. (this study)
Tail unit 3.0	100	NAM	10	24	22.45	0.24	0.94	730	724.50	95.91	0.99	Brown <i>et al.</i> (2023); Marneweck <i>et al.</i> (this study)
Tail unit 3.0	100	NER	5	24	21.42	0.41	0.89	730	269.00	63.03	0.37	Marneweck et al. (this study)

50

African Journal of Wildlife Research Vol. 54, 2024

Continued on p. 51

Table 1 (continu	ed)											
Unit type, version	Unit weight (g)	Deployed country	Deployed units (<i>n</i>)	Fix schedule (per day)	Fix achieved (mean/day)	Fix achieved (S.E./day)	Fix success rate	Deployment expected (days)	Deployment length (mean days)	Deployment length (S.E.)	Deployment success rate	Citation(s)
Tail unit 3.0	100	SSD	10	24	19.93	0.78	0.83	730	74.80	9.88	0.10	Marneweck <i>et al.</i> (this study)
Tail unit 3.0	100	TCD	8	24	7.61	0.20	0.32	730	163.13	25.36	0.22	Marneweck et al. (this study)
Tail unit 3.0	100	ZAF	-	24	17.04	0.79	0.71	730	135.00	00.0	0.18	Marneweck et al. (this study)
Ear tag 1.0	Unk	ZAF	Unk	Nh	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Deacon, F., pers. comm; Haupt, M., pers comm.
Ear tag 2.0	25	ZAF	12	9	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Nyathi (2020)
Ear tag 3.0	33	ZAF	0	12	7.56	Unk	0.63	Unk	252.00	Unk	Unk	Broekman <i>et al.</i> (2022); Brown <i>et al.</i> (2023); Marmeweck <i>et al.</i> (this study); Wild <i>et al.</i> (2023)
Ear tag 4.0	32	AGO	17	4	2.90	0.11	0.72	1,095	170.71	31.73	0.16	Marneweck et al. (this study)
Ear tag 4.0	32	MOZ	21	4	2.77	0.09	0.69	1,095	184.95	39.58	0.17	Marneweck et al. (this study)
Ear tag 4.0	32	NAM	55	4	3.16	0.07	0.79	1,095	305.87	27.46	0.28	Marneweck et al. (this study)
Ear tag 4.0	32	NER	5	4	2.91	0.05	0.73	1,095	335.20	35.30	0.31	Marneweck et al. (this study)
Ear tag 4.0	32	SWZ	7	4	2.34	0.16	0.59	1,095	220.29	79.25	0.20	Marneweck et al. (this study)
Ear tag 4.0	32	SSD	с	4	2.21	0.07	0.55	1,095	170.33	37.52	0.16	Marneweck et al. (this study)
Ear tag 4.0	32	TCD	9	4	2.18	0.08	0.55	1,095	189.33	45.74	0.17	Marneweck et al. (this study)
Ear tag 4.0	32	NGA	24	4	1.61	0.05	0.40	1,095	268.71	45.24	0.25	Marneweck et al. (this study)
Ear tag 4.0	32	ZAF	12	4	3.47	0.11	0.87	1,095	294.33	82.45	0.27	Brown <i>et al.</i> (2023); Marneweck <i>et al.</i> (this study)
Ear tag 4.0	32	ZWE	12	4	2.29	0.06	0.57	1,095	506.00	43.00	0.46	Marneweck et al. (this study)
Ear tag 4.1	32	NAM	2	24	8.48	0.12	0.36	1,095	564.50	0.35	0.52	Marneweck et al. (this study)
Ear tag 4.1	32	ZAF	-	24	5.31	0.12	0.22	1,095	283.00	00.0	0.26	Marneweck et al. (this study)
Ear tag 4.1	32	ZWE	2	24	7.06	0.17	0.30	1,095	412.00	99.70	0.38	Marneweck et al. (this study)
Ear tag 5.0	22	NAM	9	12	6.96	0.16	0.58	1,095	140.67	8.55	0.13	Marneweck et al. (this study)
Ear tag 5.0	22	RWA	5	12	3.12	0.43	0.26	1,095	24.40	7.86	0.02	Marneweck et al. (this study)
^Publication not inclu *Numbers are estim	uded in the ates gathe	e literature se	arch outcor ilable inform	me. nation.								

Marneweck et al.: The evolution of tracking technology for wild giraffe

51

units to giraffe as part of their collaborative projects (for a full list of permits and agreements see Supplementary Table S2).

NECK COLLARS

Neck collar 1.0

The first recorded giraffe collaring was of a Masai giraffe in 1970 in Nairobi National Park (NP), Kenya. Foster & Dagg (1972) fitted a radio collar to the neck of a young female which transmitted data for 63 days. However, no details on the radio system or method of collaring were noted. In 1972, Langman (1973) tested various prototypes designed by the National Electrical Engineering Research Institute (Pretoria, South Africa) on penned South African giraffe (G. giraffa giraffa) before a final model was constructed. The final design was a 3.5 kg ellipse shape to stop constricting around the neck, padded to mitigate skin irritation, adjustable to fit a range of neck sizes, and weighted for counterbalance to mitigate lateral rotation (Fig. 1a). The final radio collar design was fitted to the base of the neck of seven South African giraffe in the Timbavati Private Nature Reserve (NR), South Africa. The ground range of the Very High Frequency (VHF) transmitters in the field fluctuated between 1.50-9.00 km with a mean transmitting life of 255.00 ± 24.05 days. There were no reported instances of collars sliding up the neck when giraffe drank (Langman, 1973).

Neck collar 2.0

In the late 1980s, du Toit (1990) fitted VHF radio collars to three South African giraffe in the Kruger NP, South Africa. The collars were modified from a design intended for African lion (Panthera leo), with VHF telemetry units made by Telonics attached to machine-belting collars and secured with aluminium rivets (J. du Toit, pers. comm.). The collars were placed at the base of the neck close to the shoulders and the author reported that the mane of the giraffe was stiff enough to hold the collar in place so that it did not slide forward when the neck was lowered (Fig. 1b,c; du Toit, 1990). Additionally, du Toit reported that the collar caused minimal stress to the giraffe (J. du Toit, pers. comm.). Only one of the three collars worked for a sufficient length of time to be included in their study (>10 consecutive months) and was removed after 27 months, with a signal range of up to 20 km (du Toit, 1990).

Neck collar 3.0

In 2002 the neck collar 3.0 was designed and constructed by Africa Wildlife Tracking (AWT), South Africa, and rested at the base of the neck and over the chest (Fig. 1d). The GPS unit (MT2000 terminal using the Inmarsat 3 satellite system), coupled with a battery pack that also served as a counterbalance, had a built-in VHF transmitter and weighed <900 g. Four Angolan giraffe (G. g. angolensis; three males and one female) were fitted with the neck collar 3.0 in 2002 in northwestern Namibia (Fennessy, 2004). The four collars were programmed to record data at eight-hour intervals for up to two years. In addition, three of the collars were also programmed to record hourly locations for 4-5 consecutive days each month. However, unexpected complications, including collars twisting and breaking inner wiring (Fig. 1e,f), meant that deployment length was <3.5 months (Fennessy, 2004, 2009). The collars were removed or fell off naturally. Despite their limited longevity, the collars were the first to transmit high-resolution data via GPS satellite and were used in home range and daily movement analyses that would not have been possible with VHF alone (Fennessy, 2004, 2009).

Neck collar 3.1

The neck collar 3.1 included an AWT GPS / Global System for Mobile Communication (GSM) unit (which transmits data over a cellular network), capable of obtaining up to 48 locations per day. In 2009, the neck collar 3.1 was fitted to four Angolan giraffe translocated to communal conservancies in Namibia (V. Guillemin, pers. comm.). However, without a counterbalance in this design, the neck collars tended to twist, often leading to the GPS unit sitting under the giraffe's neck and limiting the signal. Other collars fell off naturally and some individuals moved into areas out of the GSM network range (V. Guillemin, pers. comm.). Overall, these collars showed limited performance and little valuable data were retrieved due to poor GSM 2G network coverage at the site.

Neck collar 3.2

In 2010, the neck collar 3.2 was developed by AWT with the transmitter and battery moulded in a single block at the top of the collar, and a 5 kg lead counterweight on the opposite side to restrict movement. This culminated in a heavy collar of ~10 kg. Initially, three adult female West African giraffe (*G. c. peralta*) were fitted with the collars in

Fig. 1. a, Giraffe neck collar 1.0 (source: Langman, 1973); **b**, **c**, neck collar 2.0 in South Africa (© du Toit, J.); **d**, neck collar 3.0 with enclosed battery counterbalance at the bottom fitted to a giraffe in Namibia (© GCF); **e**, **f**, neck collar 3.0 inverted due to lack of counterbalance (© Guilleman, V., ICEMA); **g**, neck collar 3.2 showing harness around the body (source: Suraud, 2011); **h**, neck collar 4.0 initial placement (source: Deacon, 2015); **i**, **j**, **k**, neck collar 3.3 showing counterbalance at the front (© Naylor, S.).

the 'Giraffe Zone' of Niger, but these fell off within a day (Suraud, 2011). To prevent this, a body harness consisting of an elastic strap was fitted to the collar and ran behind the front legs and under the body (Fig. 1g). A total of eight of these adapted neck collars were fitted to adult females (Suraud, 2011). Programmed to record hourly locations, one fell off and one failed, leaving six transmitting data over a three-month period (a total of 4 500 locations; Suraud, 2011). While the actual fix rate was not recorded, based on the number of locations and deployment length of six collars, we assume an average of 8.33 locations/day. After three months, all remaining collars were removed safely after it was noticed that the units started to irritate some of the giraffe (Suraud, 2011). Each giraffe was treated appropriately to ensure their long-term welfare (Suraud, 2011) and they were all subsequently recorded healthy during surveys in the following years (J. Fennessy, pers. obs.).

Neck collar 4.0

In 2011, AWT designed the neck collar 4.0 to fit around the upper part of the neck (Deacon, 2015). The collar weighed 635 g and was fitted to a single male South African giraffe as a trial in the Woodland Hills Wildlife Estate, South Africa (Fig. 1h). However, within 45 days, the neck collar slipped downward and was subsequently removed without any long-term impact on the giraffe. This collar prototype was fitted to a giraffe simultaneously as a head harness, and while both units had GPS capabilities, only GPS data from the head harness were recorded (see *Head harness 3.0;* Deacon, 2015).

Neck collar 3.3

More recently in 2021, a further modified neck collar fitted with a GPS/GSM device was designed by AWT and powered by two AA batteries. With narrower straps, the neck collar 3.3 was shorter in total length, had no counterbalance, and was designed to sit at the base of the giraffe neck (Fig. 1i–k). The collar was lightweight in comparison to previous neck collars, *i.e.* <635 g (J. Fennessy, pers. obs.). Fitted on two South African giraffe in Phinda Private Game Reserve (GR), South Africa (one male, one female), both collars fell off almost immediately, with a mean deployment length of 2 ± 0.00 days. Programmed to record hourly locations (24/day), during their short deployment time the achieved fixes was

on average 2.67 \pm 1.08 locations/day (Table 1, Table S3).

HEAD HARNESS

Head harness 1.0

The first recorded giraffe head harness was used by Scheepers (1992) who fitted 'scrum caps' equipped with Telonics VHF transmitters to two Angolan giraffe in northwestern Namibia in the late 1980s. The units were placed high on the neck, supported by a harness over the ossicones to prevent them from shifting down and each harness a different colour to enable easier identification. The signal could be received up to 25 km; however, no information could be obtained on their performance.

Head harness 1.1

The head harness 1.1, designed by Lewa Wildlife Conservancy and Kenya Wildlife Service, was equipped with a Telonics VHF transmitter. In 2008, the canvas head harness 1.1 was fitted to three reticulated giraffe (two females and one male) during their translocation to Sera Wildlife Conservancy, Kenya (Fig. 2a; King, Leogusa Lemerketo & Lesimirdana, 2009; Chege, 2012). The head harness 1.1 was light and flexible, and no detrimental effects were noted on the giraffe (King et al., 2009). This design used cotton thread to hold the harness together, which disintegrated over time as planned. However, the short transmission time of the VHF unit limited the signal to only two hours each day which made it difficult to locate the giraffe regularly. Because of the limited VHF signal, deployment longevity was therefore uncertain. King et al. (2009) reported that one giraffe died post-release; the team was unable to locate one giraffe after three months, and the third unit was still functional six months post-release. Therefore, we estimated that deployment longevity was a minimum of 135.00 ± 36.74 days (Table 1).

Head harness 1.2

The head harness 1.2 was designed by AWT in the early 2010s. Using the Globalstar satellite constellation network for data upload, better satellite reception was achieved by fitting the unit atop the skull and in front of the ossicones (Fig. 2b). The head harness 1.2 had a combination of GPS and built-in VHF transmitters that were now fitted with the battery in the same, single unit due to reduced component sizes. Additionally, AWT incorporated temperature sensors and offered the option of adding additional sensors (e.g. accelerometers; Deacon, 2015). The head harness 1.2 weighed ~670 g and was first trialled on a single male South African giraffe in South Africa (Deacon, 2015). After this trial, the head harness 1.2 was fitted to eight female giraffe in the Khamab Kalahari NR, South Africa (Deacon, 2015; Deacon & Smit, 2017; Deacon & Bercovitch, 2018; Deacon, Smit & Grobbelaar, 2023a,b). With one coming off early due to a broken strap, they were deployed on giraffe for 613.00 ± 9.42 days (with some units still functional upon removal; Deacon, 2015; Deacon & Smit, 2017). They were programmed to record data every four hours (six locations/day) and, although only summarized as total points and total days per giraffe (Deacon, 2015; Deacon & Smit, 2017), we estimated the achieved fix rate at 5.46 ± 0.43 locations/day (Table 1). Deacon (2015) reported that some skin wear was noted on the ossicones from persistent rubbing; however, it disappeared after the removal of the units. After this trial, the head harness 1.2 was used for more than 75 giraffe with reported success with >20 months deployment length but no detailed data available (F. Deacon, pers. comm.).

In 2012, four adult female South African giraffe were fitted with the head harness 1.2 in Wildlife Management Area NG26 on the western side of the Okavango Delta and Chobe NP, northern Botswana (McQualter, Chase, Fennessy, McLeod & Leggett, 2016). Programmed to record data every four hours (6/day), the achieved fix rate success was 0.81 and the deployment success rate was 0.25 (McQualter *et al.*, 2016). Monitoring revealed that the units eventually cut into the skin (K. McQualter, pers. comm.). All head harnesses were subsequently removed, and all individuals recovered fully (K. McQualter, pers. comm.).

The head harness 1.2 was also used by the Namibian Ministry of Environment, Forestry, and Tourism on Angolan giraffe in Namibia in 2011–2012 (Flanagan, Brown, Fennessy & Bolger, 2016). The head harness 1.2 was fitted to six giraffe (five females and one male) translocated from Etosha NP (and surrounds) to communal conservancies in northeastern and northwestern Namibia. The deployment success rate was 0.31

Fig. 2. a, Giraffe head harnesses 1.1 fitted to a giraffe in Kenya (© Craig, I., Northern Rangelands Trust); **b**, head harness 1.2 fitted to a giraffe in South Africa (source: Deacon, 2015); **c**, head harness 1.2 fitted backwards to a giraffe in Garamba National Park, Democratic Republic of Congo (© African Parks); **d**, retrieved head harness 1.2 after falling off a giraffe in Garamba National Park, Democratic Republic of Congo (© African Parks).

and, although scheduled to record hourly (24/day), the mean fix rate success was only 0.33 (Flanagan *et al.*, 2016; Table 1, Table S3).

In 2016, African Parks fitted the head harness 1.2 to eight Kordofan giraffe (six females and two males) in Garamba NP, Democratic Republic of Congo (Monico & Ortega, 2012; D'haen, 2018; D'haen Fennessy Stabach & Brandlová, 2019). All units were fitted backwards on the giraffe as the median ossicone was too large compared to the South African giraffe for which it was designed (P. Morkel, pers. comm.). The scheduled fix rate was three locations/day, which achieved a fix success rate of 1.07 because of one over-performing unit (Table S3). With a deployment success rate of 0.24 (Table 1), five were removed or fell off within a year, and the remaining three were subsequently removed. One unit had reportedly slipped off the head and onto the neck (D'haen, 2017). Upon removal, it was noted that some giraffe had wounds on the top of the head where the GPS unit was placed but all giraffe were treated and made a full recovery (M. D'haen, pers. comm.).

Between 2011 and 2016, GCF and collaborative partners in respective countries fitted the head harness 1.2 to five female Angolan giraffe translocated to communal conservancy areas in Namibia, five female Nubian giraffe in Murchison Falls NP, Uganda, three female Nubian giraffe in Gambella NP, Ethiopia, and two female South African giraffe in Bubye Valley Conservancy, Zimbabwe (Fig. 2c). Each unit was programmed to a different fix schedule (see Table 1 and Table S3 for details) and achieved a fix success rate of 1.17 and deployment success rate of 0.30 (Table 1, Table S3).

In 2017, Scheijen, Van der Merwe, Ganswindt & Deacon (2021) fitted the head harness 1.2 to 18 South African giraffe; however, only seven units worked sufficiently to be included in the study. While exact metrics were not reported, they noted that the giraffe were tracked for between 5 and 12 months and reported a total of 33 772 GPS locations (Scheijen *et al.*, 2021). Based on data recorded on 255 days across seven individuals we can estimate a fix success rate of 0.79 (Table 1).

Head harness 2.0

More recently, Brandes Sicks & Berger (2021) described using a head harness with attached accelerometers on three zoo-housed Nubian giraffe (two females at the African Lion Safari Park

in Ontario, Canada, and one male in the Zoological Garden Berlin, Germany) in 2017. Two different accelerometers were tested: an e-obs (e-obs GmbH, Munich, Germany) and an AWT unit. The e-obs device was programmed to record for 2.43 seconds at 20-second intervals, resulting in 82 data points per axis per recording. Data were stored on board and later downloaded via radio and a base station. The AWT device was programmed to record one data point per axis continuously, which was directly transmitted via a UHF transceiver. Both devices were tested simultaneously on the two females, with the e-obs device taped to the AWT harness accounting for a total weight of 962 g. Only the e-obs device was tested on the male, taped to a leather harness with a total weight of 423 g. All devices were positioned to sit between the ossicones. Brandes et al. (2021) described that both devices showed limitations for deployment in the wild. The battery capacity was limited for both devices, which were actively deployed for 15.50 ± 1.50 days (Table 1). Furthermore, the e-obs device needs to be close to the base station for downloading (500 m to several km). Close proximity to other objects or the ground could disrupt the AWT accelerometer, limiting data transmission (Brandes et al., 2021).

ANKLE BRACELETS

Ankle bracelet 1.0

The ankle bracelet 1.0 was first trialled at Brookfield Zoo, U.S.A., in 2015 (Razal, 2016, 2017). Custom-made ankle bracelets were fitted to four reticulated giraffe (three females, one male) made from elastic and secured with Velcro (Fig. 3a,b). Each ankle bracelet had a pouch holding a data logger with an accelerometer (Razal, 2016, 2017). The giraffe wore the ankle bracelets for a 24-hour period, one day per week, except for one female who would repeatedly remove the ankle bracelet. Additional information on these units and their achieved fix rate or deployment longevity was not reported.

Ankle bracelet 2.0

In 2021, GCF and its partners trialled ankle bracelets on two South African giraffe (one male and one female) in Phinda Private GR, South Africa. Made by AWT using the same rubberized belting material as used for the AWT head harness 3.0 and tail unit 1.0 (Fig. 3c), the units were more durable than the units used in the 2015 zoo trial.

Fig. 3. a, b, Giraffe ankle bracelet 1.0 fitted to a zoo-housed giraffe in the U.S.A. (source: Razal, 2016, 2017); c, ankle bracelet 2.0 fitted to two giraffe in Phinda Private Game Reserve, South Africa (© GCF).

Powered by two AA batteries, the ankle bracelets were programmed to record hourly fixes (24/day). They achieved a fix success rate of 0.45 and deployment success rate of 0.17 (Table 1, Table S3).

OSSICONE UNITS

The next development in the evolution of giraffe tracking was the 'ossi-unit', a device designed to attach to the ossicone of a giraffe. Giraffe are born with soft ossicones that exist as small bony cores which ossify separately from the bones of the skull and later fuse to the underlying skull (Davis, Brakora & Lee, 2011; Shorrocks, 2016). While ossicones are composed of living bone, they are completely ossified and fused to the skull by sexual maturity with no significant blood vessels documented, nor signs of haematopoiesis (formation of blood cells which occurs in the bone marrow of mammals; Fig. 4a,b; Ganey, Ogden & Olsen, 1990), making the attachment of the GPS ossi-unit safe for the giraffe.

Ossi-unit 1.0

In 2016, GCF partnered with Savannah Tracking Ltd (Kenya) to develop the ossi-unit 1.0, which contained a GPS satellite system with iridiumbased data upload powered *via* a lithium polymer battery. Recharged by solar energy, the unit weighed approximately 180 g. A TA-UHF telemetry beacon, tri-axial accelerometer, geo-fencing alert, and full two-way communication were incorporated into the ossi-unit 1.0. The unit was attached to one ossicone with two stainless steel bolts and two durable (tensile strength of 1000– 1500 daN), flat, UV-stable nylon straps 25 mm wide (Fig. 4e). The unit was placed in the middle of the ossicone, far from the nearest sinus connected to the cranium (Fig. 4c,d). Fitted while the giraffe was fully awake following individual immobilization, little to no signs of discomfort or pain were observed during fitment (S. Ferguson, pers. obs.). The unit was placed snugly against the ossicone while allowing for some movement to prevent any potential rubbing and subsequent infection, and the ends of the bolts were cut to ensure there were no protruding ends that may harm another giraffe when neck sparring.

GCF first trialled the ossi-unit 1.0 in 2017 on Okapuka Game Ranch, Namibia, on two Angolan giraffe (one male and one female). Programmed initially to send twice daily iridium data uploads of hourly data and a UHF telemetry beacon every two hours, one unit was later changed to record the location every 10 minutes. Initially, the two giraffe were physically monitored on a weekly basis. One giraffe was legally hunted on a neighbouring property. Inspection of the ossicone when the unit was removed revealed no visible signs of infection or damage to the bone (J. Fennessy, pers. obs.).

After some small physical modifications, the final ossi-uni 1.0 was deployed elsewhere, weighing 180 g (Fig. 4c–f). The battery was changed to an AA-sized lithium-ion rechargeable battery, deemed more durable than the lithium polymer

Fig. 4. a, Radiography of giraffe skull following perfusion of the carotid artery, which branches externally to the ossicones (source: Ganey, Ogden & Olsen, 1990); **b**, ossicone of a giraffe, showing separation of ossified bony tissues (source: Ganey, Ogden & Olsen, 1990); **c**, ossi-unit 1.0 on a female; **d**, ossi-unit 1.0 on a male; **e**, **f**, ossi-unit 1.1; **g**–**i**, ossi-unit 1.2; **j**, ossi-unit 2.0. (Photographs c-k © GCF).

(H. Rasmussen, pers. comm.). The performance of ossi-unit 1.0 was reviewed in detail by Hart, Fennessy, Rasmussen, *et al.* (2020). Of those in Kenya, Namibia, and Uganda, the fix success rate was 0.99 (n = 50 deployed units 2017–2019), and the battery never dropped below the cut-out threshold of 3.2 volts (n = 20 deployed units 2017–2019; Hart, Fennessy, Rasmussen, *et al.*, 2020). Between 2017 and 2021, GCF facilitated and/or assisted in the deployment of a total 203 ossi-units in Chad (Clark *et al.*, 2023), the Demo-

cratic Republic of Congo, Kenya (Crego *et al.*, 2021, 2023), Namibia (Hart, Fennessy, Hauenstein & Ciuti, 2020), Niger, Tanzania, Uganda (Brown & Bolger, 2020), and Zimbabwe (for more information on sites and deployments, see Table 1 and Supplementary Table S3). Collectively, these 203 units had a mean fix success rate of 0.92 and deployment success rate of 0.58 (Table 1, Table S3). Note that some of these units reported here include those also reviewed by (Hart, Fennessy, Rasmussen, *et al.*, 2020).

Ossi-unit 1.1

The ossi-unit 1.1 was developed resulting in a smaller unit that weighed ~110 g. The solar panel was halved in size, and the battery was changed to 2/3 AA to optimize space (H. Rasmussen, pers. comm.). GCF deployed nine of the ossi-unit 1.1 between 2019 and 2021 across three sites: two Angolan giraffe (one male and one female) in northwestern Namibia, and seven Nubian giraffe in Uganda (one male in Kipedo NP; three females in Murchison Falls NP; three females in Pian Upe Wildlife Reserve). Scheduled for hourly fixes (24 locations/day), the mean fix success rate was 0.91 with a mean deployment success rate of 0.31 (Table 1, Table S3; Brown et al., 2023). Issues with sufficient battery life were noted and attributed to the smaller unit size and the component changes.

Ossi-unit 1.2

A final version of the Savannah Tracking ossiunit was developed in 2021 with a slanted solar panel to increase solar exposure for recharging and circumvent battery issues of the ossi-unit 1.1 (Fig. 4h,i). With the same model interior as the previous version (*i.e.* 2/3 AA battery), the casing was now 3D printed and streamlined to improve charging and it weighed ~100 g. Six of the ossi-unit 1.2s were deployed on Angolan giraffe in northwestern Namibia (Fig. 4j; Brown *et al.*, 2023). Programmed to record hourly locations (24 locations/day), the mean fix success rate was 0.94 and the mean deployment success rate was 0.77 (Table 1, Table S3).

The ossi-unit was the best functioning unit to date in terms of reliability and longevity; however, <2% of cases resulted in a broken ossicone and, although this did not negatively impact the giraffe, some abnormal growth around the attachment site was observed on a few individuals (J. Fennessy, pers. obs.). With the welfare of the giraffe in mind, GCF requested an alteration to the bolt and strap placement so the units could be fitted to the tail. Subsequently, new standard operating procedures were adopted and GCF now only affixes these units to the tail of giraffe (see *Tail unit 3.0*).

Ossi-unit 2.0

At the same time as ossi-unit 1.2 (2021), an AWT ossi-unit 2.0 with GSM was also trialled on two female South African giraffe in Phinda Private GR, South Africa (Fig. 4k). Programmed to record

hourly locations (24/day), the units had a mean fix success rate of 0.97, and a deployment success rate of 0.21 (Table 1, Table S3). Limitations with adequate GSM network coverage across the site were experienced and because the units were battery-operated, this limited their longevity.

In addition to the four ossi-units described above, there were several other prototypes developed by a range of companies, but they never made it to the field trial stage. Between ossi-unit 1.2 and 2.0, an ossi-unit with a slanted solar panel was developed by Savannah Tracking, but the prototype was not deployed in the field. During this time, Savannah Tracking also developed a prototype of a battery-powered ossi-unit, built to replace the solar-panelled version. But, due to its cumbersome size and shape, this unit was not taken to field trials.

TAIL UNITS

Tail unit 1.0

The first dedicated tail unit 1.0, manufactured by AWT, was trialled in Phinda Private GR, South Africa, in 2021 by J. Fennessy. Weighing 135 g, the belting was integrated into the unit design as one continuous component, powered by two AA batteries (Fig. 5a-c). The unit was placed along the caudal aspect of the tail over the most distal caudal vertebrae, proximal to the tail hair tassel. The tail unit 1.0 was fitted to one male and one female South African giraffe and programmed to record data every hour (24 locations/day). They had a mean fix success rate of 0.73 but a deployment success rate of only 0.01 (Table 1, Table S3). The reason for the lack of data received after only seven days is unknown, but like the ossi-unit 2.0, likely a result of unexpected poor GSM 2G coverage in the area.

Tail unit 2.0

In 2021, two GPS tail units that utilized the Long Range (LoRa) network for data transmission were trialled. These units were manufactured by AWT and fitted in the same way as tail unit 1.0 on two South African giraffe in Phinda Private GR, South Africa, which were later translocated to Majete Wildlife Reserve, Malawi (J. Fennessy, pers. comm.). Powered by two AA batteries, they were scheduled to record a location every six hours (four locations/day), and the units had a mean fix success rate of 0.76 and a mean deployment success rate of 0.53 (Table 1, Table S3).

Fig. 5. a–c, Giraffe tail unit 1.0 in Phinda Private Game Reserve, South Africa; d–g, tail unit 3.0 to Angolan giraffe in northwestern Namibia (© GCF).

Tail unit 3.0

In 2021, Savannah Tracking modified the ossiunit 1.2 to allow attachment to the tail (hereafter referred to as the tail unit 3.0; Fig. 5d-g). Unlike the tail unit 1.0 and 2.0 which were designed as one single piece with fixed straps, the tail unit 3.0 consists of a unit with separate attachment straps. The bolts were not integrated like the ossi-unit, with the bolt holes re-designed to allow for different bolt sizes to be used and allow more flexibility in attachment. The unit was secured by wrapping two parallel nylon straps around the tail and affixing them back onto bolts secured with washers and nuts (Fig. 5d,e). The unit was fitted snugly to minimize movement and subsequent abrasion while loose enough to not restrict circulation. Between 2021 and 2023, GCF and collaborative partners (e.g. African Parks, Smithsonian Institution, communal conservancies of northwest Namibia, Governments and Wildlife Authorities in Chad, Kenya, Namibia, Niger, and South Sudan), deployed 65 tail units across Chad (n = 8), Kenya (n = 25), Namibia (n = 16), Niger (n = 5), South Africa (n = 1), and South Sudan (n = 10), 43 of which are still active (as of December 2023).

Overall, the mean fix success rate of the tail unit 3.0 was 0.72 with a deployment success rate of 0.32 (Table 1, Table S3; note 43/77 units still actively deployed).

EAR TAGS

Ear tag 1.0

The first GPS ear tag for giraffe was designed by AWT in 2015 and trialled on South African giraffe in the Sandveld NR, South Africa (Fig. 6a). The tag consisted of a Radio Frequency Identification (RFID) tracking system with a digital receiver, a GPS device, and a temperature sensor. However, according to AWT and the deploying team, the ear tags were too heavy and failed soon after deployment (F. Deacon, pers. comm.; M. Haupt, pers. comm.). It appears that the plastic material was not strong enough, and the tag itself broke in half, leaving the stud remaining in the ear with no unit attached (F. Deacon, pers. comm.).

Ear tag 2.0

The ear tag 2.0 was developed in 2019 by Ecotone (Ecotone Telemetry, Poland), and con-

Fig. 6. a, Giraffe ear tag 1.0 (O AWT); **b**, ear tag 2.0 fitted in South Africa (source: Nyathi, 2020); **c**, ear tag 3.0 fitted in South Africa; **d**, ear tag 4.0; **e**, ear tag 4.0 fitment; **f**, ear tag 4.0 fitment; **f**, ear tag 4.0 fitment; **g**, ear tag 5.0; **h**, ear tag 5.0 fitted to a giraffe in Namibia. (Photographs d–g O GCF).

sisted of a GPS-Ultra High Frequency (UHF) plastic ear tag weighing ~25 g (Fig. 6b). The ear tag 2.0 was deployed in 2019 on 12 South African giraffe (seven males and five females) in the Zingela Conservation Area, South Africa (Nyathi, 2020). Programmed to send a GPS location every four hours (6 locations/day), neither the achieved

fix rate nor actual deployment length was reported (Nyathi, 2020).

Ear tag 3.0

In 2020, in partnership with the Max Planck Institute and GCF, four SigFox ear tags were deployed onto four female South African giraffe in the greater Kruger region (Balule Private GR and Thornybush GR), South Africa (Fig. 6c; Wild et al., 2023). These ear tags used the ICARUS (International Cooperation for Animal Research Using Space) satellite Internet of Things (IoT) system. Attached with a single pin, the units held a lithium polymer battery with a solar cell encased in 3D printed housing and weighed <33 g (Fig. 6c; Wild et al., 2023). They were programmed to send a GPS location every two hours (12 locations/day), with a fix success rate of 0.63 and a mean deployment length of 252 days Table 1; Wild et al., 2023). It was noted that, regardless of the fix schedule, they sometimes sent additional transmissions when the battery was fully charged (O.L. van Schalkwyk, pers. comm.).

Ear tag 4.0

In 2021, Ceres Tag (Australia) launched their solar-powered ear tags which utilize the Globalstar satellite network for data transmission (Fig. 6d). Although initially designed for livestock, these units were quickly adapted for wildlife use due to their small size, light weight (~32 g), and low cost. The developments of these units enhanced the scale of application as they were an order of magnitude cheaper than previous head, ossicone, or tail units. The Ceres Trace model is attached via a two-pronged back plate to the middle part of the ear, avoiding vasculature and cartilage ridges (Fig. 6e,f). Between 2021 and 2023, GCF and collaborative partners assisted in the deployment of 162 ear tags 4.0 (Ceres Trace model) on giraffe in Angola (n = 17), Chad (n = 6), Eswatini (n = 7), Mozambique (n = 212, Namibia (n = 55), Niger (n =5), South Africa (n = 12), South Sudan (n = 3), Uganda (n = 24), and Zimbabwe (n = 12). Ninety-six of these tags are still active (as of 14 December 2023). Default programmed to record 4 locations/day, the fix success rate was on average 0.65 and the mean deployment success rate of 0.24 (Table 1, Table S3; note 96/169 units still actively deployed).

Ear tag 4.1

Ceres Tag released a Ceres Wild model (hereafter ear tag 4.1) in 2022 which is capable of recording up to 24 locations per day. The only observable difference from ear tag 4.0 (Ceres Trace model) is the colour; the weight and attachment remain the same. GCF deployed five of the ear tag 4.1 models across Namibia (n = 2), South Africa (n = 1), and Zimbabwe (n = 2), and found a mean fix success rate of 0.29 and a deployment success rate of 0.38 (Table 1, Table S3; note 3/5 units still actively deployed).

Ear tag 5.0

As technology becomes more readily available, ongoing advances have led to more small, solar tracking units entering the market. For example, Global Satellite Engineering, U.S.A., have launched their GSat Solar tag (Fig. 6g); solar powered with a lithium polymer battery, they weigh ~22 g and come with several mounting options for attachment to ears, collars, etc. Capable of two-way communication to alter the schedule when within Bluetooth range, they can be programmed to record up to 24 locations per day. Preliminary field deployments by GCF in northwest Namibia (n = 6) and Rwanda (n = 5) show a mean fix success rate of 0.42 and deployment success rate of 0.08 but note that they have been actively deployed for <180 days (Table 1, Table S3; note 9/11 of these units still actively deployed).

CONCLUSIONS

The technology for tracking giraffe has evolved considerably since its first trials in 1970 (Fig. 7). The technology started with heavy (10 kg) VHF neck collars and has evolved to lightweight (32 g) solar GPS ear tags. Without a strong economic drive, the development of many prototypes and field trials was driven, undertaken, and financed by a few conservation not-for-profit organizations and academic researchers, most notably GCF. While several designs were tested with varied success, the gained data have and will continue to help improve unit designs and the welfare of giraffe considerably. As most unit types are manufactured in small, non-commercial production processes, there is limited quality control and guaranty for consistency in manufacturing. Human error, changes in components, and firmware updates affect batch consistency and make independent assessment of performance limitations difficult. Moreover, while terms and conditions may make allowances for replacing or refurbishing faulty units, the main risk remains with the buyer as these units are often deployed at great cost and risk, and finding and replacing inactive units on wildlife is rarely a plausible option. Expected unit longevity is another important consideration for unit choice. While a small percentage of unit failures are expected and considered acceptable, we have experienced high failure rate, with only 50/347 (14%) of units with closed deployments showing a deployment success rate \geq 0.70 (Table 1, Fig. 8). Based on the data above and on current availability, we suggest the following two recommendations to inform unit choice depending on the desired outcome (Table 2):

- (1) For low-resolution monitoring (for example, three months post-translocation monitoring), we recommend the ear tag 4.0 (Ceres Trace) or ear tag 5.0 (GSat Solar; but note the limited deployments thus far) for all giraffe species. While the fix success is lower (mean success rate 0.66, frequently resulting in temporal irregularity) and communication is only one way, they are available at an affordable price and are quick and easy to affix to animals.
- (2) For high-resolution monitoring and/or research questions, there is currently no unit on the market that shows a sufficient performance success for giraffe. While there are units with high fix success rates (*e.g.* tail unit 3.0), the low deployment success rates do not justify the risk and expense of affixing to animals in the field. We are currently working with manufactures to further develop a unit that can persist for an acceptable duration.

Some units are complicated to fit or require considerable expertise and/or time to fit (*e.g.* head harness, ossicone unit), and there are now alternatives available. It is important to stress that no giraffe that was fitted with these devices by GCF or during GCF collaborative projects sustained any life-threatening or severe injury. Giraffe that were observed showing signs of minor injury (irritation, skin rubbing or local infections, etc.), the units were removed as soon as logistically possible and there were no long-lasting impacts on the animals.

We hope that this information can assist conservation management and research on giraffe as well as add value for the GPS tagging of other species. While it is not appropriate to compare the performance of giraffe-specific units with those deployed on other species that are able to carry different devices, payloads, units with different solar exposure and network coverage, the perfor-

African Journal of Wildlife Research Vol. 54, 2024

Fig. 8. The monthly mean fix success rate (achieved fixes/scheduled) of the four unit types for which we have n > 2 closed deployments. The vertical blue dashed line represents the manufacturer advertised longevity, the horizontal blue dashed line represents perfect success rate of 1.0, and the orange solid line represents the loess best fit line.

Table 2 . Summary of giraffe. Cost estimat [,]	the pros and cons of the ss are calculated from tl	most viable (<i>i.e.</i> m he date of last pur	ean fix success >0.60 and I chase and are to be used	mean deployment leng as a guide only.	lth >3 months) ver	sions of each tracking GPS unit type for
Unit type and version	Manufacturer (model where applicable)	Fix success rate (mean achieved/ scheduled)	Deployment success rate (mean days/ expected)	Cost (estimate)	Attachment time (excl. sedation/ capture)	Other considerations
Head harness 1.2	Africa Wildlife Tracking	0.96	0.28	Unit: USD1300 Data: USD44/month (incl. tax)	3-5 minutes	Potential of straps rubbing the skin
Ossi unit 1.2	Savannah Tracking	0.94	0.92	Unit: USD1460 Data: USD25/month (varies depending on data package) (excl. tax)	5-10 minutes	Implications with behaviour; <i>e.g.</i> males sparring and causing damage Requires careful placement and additional tools
Tail unit 3.0	Savannah Tracking	0.72	0.32	Unit: USD1190 Data: USD25/month (varies depending on data package) (excl. tax)	~ 3 minutes	
Ear tag 4.0	Ceres (Trace)	0.65	0.24	Unit: USD205 Data: USD0.17/ month varies depending on software) (incl. tax)	< 1 minute	Can be fitted during mass capture without sedation

Marneweck et al.: The evolution of tracking technology for wild giraffe

mance of the current units used on giraffe is just below average compared to other species. For the GPS tail unit 3.0 (Savannah Tracking), the average fix rate success is 0.68. In comparison, the fix rate success of Loteck LifeCycle GPS collars was on average 0.88 for bison (Bison bison) and 0.65 for Caribou (Rangifer tarandus) in Canada (Jung et al., 2018). Schlippe, Rosell & Mayer (2018) reported a fix rate success of 0.86 for GPS devices attached to Eurasian beavers (Castor fiber) in Norway. Pastorini, Prasad, Leimgruber, Isler & Fernando (2015) tested several brands of GPS collars on Asian elephant (Elephas maximus) in Sri Lanka, averaging a 0.78 fix success rate. However, such comparisons are not always helpful as factors impacting the unit performance vary between locations even within species. For example, our experience has shown that the GPS tail unit (3.0) performs much better on giraffe in an arid landscape (e.g. Namibia) than in more mesic environments (e.g. Kenya), with fix success rates of 0.94 and 0.71, respectively, and deployment success rates of 0.99 and 0.14, respectively (cloud cover, satellite coverage, and manufacturing issues are likely the main factors impacting the performance). It is possible that the less-conventional attachment methods to animals (such as the giraffe) decrease the likelihood of both high fix and deployment success; however, site-specific variables also need to be considered. In addition, variation in production batches appear to be another relevant factor for performance.

For giraffe, future development of tracking technology requires an innovative approach to unit and attachment design. While GCF has put considerable resources into testing giraffe-specific units, performance is still not as reliable and high as those obtained with traditional neck collars on other species. There are many studies reporting the performance of stationary units (*e.g.* Moore, Beaman, Brice & Burke da Silva, 2023), and many more publications using GPS tracking units that do not sufficiently report performance to allow for comparison and/or interpretation which limits our ability to learn from these studies. With such species- and site-specific variables to consider, we encourage others to report these basic performance metrics. Specifically, we encourage future studies to report their fix success rate and deployment success rate so that we can continue to compare performance across unit types and species. We recommend establishing a wildlife tracking consortium with non-commercial interest

to collaboratively share experiences and work collaboratively on developing reliable solutions, similar to what is currently done by EarthRanger in the data sharing and visualization space. By sharing field experiences and subsequent data outputs we can further develop remote tracking technology and encourage modern options for improved species conservation and the welfare of animals wearing these devices.

ACKNOWLEDGEMENTS

We would like to thank the various government authorities for providing the appropriate permission to facilitate the work of GCF and our collaborative partners in fitting and monitoring the various tracking units on giraffe throughout Africa. Additionally, we thank our numerous conservation partners, wildlife veterinarians, donors, and supporters who have provided valuable technical and financial assistance in making this work possible, Lastly, we thank the various telemetry companies and academics with whom we have worked during the evolution of these tracking units, in particular African Wildlife Tracking, Ceres Inc., and Savannah Tracking Ltd.

[§]ORCID iDs

- C.J. Marneweck (D) orcid.org/0000-0002-5064-1979 ip orcid.org/0000-0002-0119-0614
- M.B. Brown
- S. Fennessy
- S. Ferguson
- (i) orcid.org/0000-0002-3365-1075 (i) orcid.org/0000-0002-8086-6706
- A.B. Muneza J. Fennessy
- (D) orcid.org/0000-0002-2128-1820 (b) orcid.org/0000-0001-5871-8267

REFERENCES

- Adams, L. (1965). Progress in ecological biotelemetry. BioScience, 15, 83-86.
- Bolger, D., Ogutu, J., Strauss, M., Lee, D., Muneza, A., Fennessy, J. & Brown, D. (2019). Giraffa camelopardalis ssp. Tippelskirchi (e. T88421036A884 21121). The IUCN Red List of Threatened Species.
- Brandes, S., Sicks, F. & Berger, A. (2021). Behaviour classification on giraffes (Giraffa camelopardalis) using machine learning algorithms on triaxial acceleration data of two commonly used GPS devices and its possible application for their management and conservation. Sensors, 21, 2229.
- Broekhuis, F., Madsen, E.K., Keiwua, K. & Macdonald, D.W. (2019). Using GPS collars to investigate the frequency and behavioural outcomes of intraspecific interactions among carnivores: a case study of male cheetahs in the Maasai Mara, Kenya. PLOS ONE, 14, e0213910.
- Brown, M.B. & Bolger, D.T. (2020). Male-biased partial migration in a giraffe population. Frontiers in Ecology and Evolution, 7, 524.
- Brown, M.B., Fennessy, J.T., Crego, R.D., Fleming, C.H.,

Alves, J., Brandlová, K., Fennessy, S., Ferguson, S., Hauptfleisch, M. & Hejcmanova, P. (2023). Ranging behaviours across ecological and anthropogenic disturbance gradients: a pan-African perspective of giraffe (*Giraffa* spp.) space use. *Proceedings of the Royal Society B*, 290(2001), 20230912.

Brown, M.B., Kulkarni, T., Ferguson, S., Fennessy, S., Muneza, A., Stabach, J A. & Fennessy, J. (2021). Conservation status of giraffe: evaluating contemporary distribution and abundance with evolving taxonomic perspectives. In *Imperiled: the Encyclopedia of Conservation* (pp. 471–487). Elsevier.

https://doi.org/10.1016/B978-0-12-821139-7.00139-2

- Chege, S. (2012). Giraffe translocation from Aberdare Country Club to Sera Wildlife Conservancy. *Giraffa*, 6, 9–13.
- Clark, R.K., Fennessy, J., Ferguson, S., Fraticelli, C., Honig, N., Morrison, T.A. & Brown, M.B. (2023). Seasonal dynamics impact habitat preferences and protected area use of the critically endangered Kordofan giraffe (*Giraffa camelopardalis antiquorum*). African Journal of Wildlife Research, 53, 119–134.

https://doi.org/10.3957/056.053.0119

- Crego, R.D., Fennessy, J., Brown, M.B., Connette, G., Stacy-Dawes, J., Masiaine, S. & Stabach, J.A. (2023). Combining species distribution models and moderate resolution satellite information to guide conservation programs for reticulated giraffe. *Animal Conservation*.
- Crego, R.D., Wells, H.B.M., Ndung'u, K.S., Evans, L., Nduguta, R.N., Chege, M.A., Brown, M.B., Ogutu, J.O., Ojwang, G.O., Fennessy, J., O'Connor, D., Stacy-Dawes, J., Rubenstein, D.I., Martins, D.J., Leimgruber, P. & Stabach, J.A. (2021). Moving through the mosaic: identifying critical linkage zones for large herbivores across a multiple-use African landscape. *Landscape Ecology*, 36, 1325– 1340.

https://doi.org/10.1007/s10980-021-01232-8

Davis, E.B., Brakora, K.A. & Lee, A.H. (2011). Evolution of ruminant headgear: a review. *Proceedings of the Royal Society B: Biological Sciences*, 278(1720), 2857–2865.

https://doi.org/10.1098/rspb.2011.0938

- Davies, A.B., Tambling, C.J., Marneweck, D.G., Ranc, N., Druce, D.J., Cromsigt, J.P., le Roux, E. & Asner, G.P. (2021). Spatial heterogeneity facilitates carnivore coexistence. *Ecology*, 102(5), e03319.
- Deacon, F. (2015). The spatial ecology, habitat preference and diet selection of giraffe (Giraffa camelopardalis giraffa) in the Kalahari region of South Africa. (Ph.D. thesis). Bloemfontein, South Africa: University of the Free State.
- Deacon, F. & Bercovitch, F.B. (2018). Movement patterns and herd dynamics among South African giraffes (*Giraffa camelopardalis giraffa*). African Journal of Ecology, 56(3), 620–628.
- Deacon, F., Smit, G.N. & Grobbelaar, A. (2023a). Climatic factors affecting seasonal movements of giraffes (*Giraffa camelopardalis*) in a semi-arid region of South Africa. *African Journal of Ecology*, 62, e13204.

Deacon, F., Smit, G.N. & Grobbelaar, A. (2023b). Re-

sources and habitat requirements for giraffes' (*Giraffa camelopardalis*) diet selection in the northwestern Kalahari, South Africa. *Animals*, 13(13), 2188.

- Deacon, F. & Smit, N. (2017). Spatial ecology and habitat use of giraffe (*Giraffa camelopardalis*) in South Africa. *Basic and Applied Ecology*, 21, 55–65.
- D'haen, M. (2017). *Quarterly conservation update Kordofan giraffe* (Giraffa camelopardalis antiquorum), *Garamba National Park, Democratic Republic of Congo.* Giraffe Conservation Foundation.
- D'haen, M. (2018). *Quarterly conservation update Kordofan giraffe* (Giraffa camelopardalis antiquorum), *Garamba National Park, Democratic Republic of Congo.* Giraffe Conservation Foundation.
- D'haen, M., Fennessy, J., Stabach, J.A. & Brandlová, K. (2019). Population structure and spatial ecology of Kordofan giraffe in Garamba National Park, Democratic Republic of Congo. *Ecology and Evolution*, 9(19), 11395–11405. https://doi.org/10.1002/ece3.5640
- Dickie, M., McNay, S.R., Sutherland, G.D., Cody, M. & Avgar, T. (2020). Corridors or risk? Movement along, and use of, linear features varies predictably among large mammal predator and prey species. *Journal of Animal Ecology*, 89, 623–634. https://doi.org/10.1111/1365-2656.13130
- du Toit, J. (1990). Home range—Body mass relations: a field study on African browsing ruminants. *Oecologia*, 85, 301–303.
- Fennessy, J. (2004). Ecology of desert-dwelling giraffe Giraffa camelopardalis angolensis in northwestern Namibia. (Ph.D. thesis). Sydney, Australia: University of Sydney.
- Fennessy, J. (2009). Home range and seasonal movements of *Giraffa camelopardalis angolensis* in the northern Namib Desert. *African Journal of Ecology*, 47, 318–327.
- Fennessy, J. & Marais, A. (2018). Giraffa camelopardalis ssp. Antiquorum (p. e.T88420742A88420817). The IUCN Red List of Threatened Species. http://dx.doi.org/10.2305/IUCN.UK.20182.RLTS.T8 8420742A88420817.en
- Flanagan, S.E., Brown, M.B., Fennessy, J. & Bolger, D.T. (2016). Use of home range behaviour to assess establishment in translocated giraffes. *African Journal of Ecology*, 54(3), 365–374.
- Foster, J. & Dagg, A. (1972). Notes on the biology of the giraffe. *African Journal of Ecology*, 10, 1–16.
- Ganey, T., Ogden, J. & Olsen, J. (1990). Development of the giraffe horn and its blood supply. *The Anatomical Record*, 227, 497–507.
- Hart, E.E., Fennessy, J., Hauenstein, S. & Ciuti, S. (2020). Intensity of giraffe locomotor activity is shaped by solar and lunar zeitgebers. *Behavioural Processes*, 178, 104178.
- Hart, E.E., Fennessy, J., Rasmussen, H.B., Butler-Brown, M., Muneza, A.B. & Ciuti, S. (2020). Precision and performance of an 180g solar-powered GPS device for tracking medium to large-bodied terrestrial mammals. *Wildlife Biology*, 2020(3), 1–8.
- Katzner, T.E. & Arlettaz, R. (2020). Evaluating contributions of recent tracking-based animal movement

ecology to conservation management. Frontiers in Ecology and Evolution, 7, 519.

https://doi.org/10.3389/fevo.2019.00519

- Kays, R., Crofoot, M.C., Jetz, W. & Wikelski, M. (2015). Terrestrial animal tracking as an eye on life and planet. *Science*, 348(6240), aaa2478.
- King, J., Leogusa, M., Lemerketo, J. & Lesimirdana, D. (2009). Post-release monitoring of translocated giraffe in Sera Wildlife Conservancy [Interim Report]. Northern Rangelands Trust, Sera Wildlife Conservancy.
- Langman, V. (1973). Radio-tracking giraffe for ecological studies. *Journal of the South African Wildlife Management Association*, 3, 75–78.
- McQualter, K.N., Chase, M.J., Fennessy, J.T., McLeod, S.R. & Leggett, K.E. (2016). Home ranges, seasonal ranges and daily movements of giraffe (*Giraffa* camelopardalis giraffa) in northern Botswana. African Journal of Ecology, 54, 99–102.
- Monico, M. & Ortega, N. (2012). Five giraffe successfully collared in Garamba National Park, DRC. *Giraffa*, 6, 4–5.
- Moore, C., Beaman, J., Brice, M. & Burke da Silva, K. (2023). A case report assessing the utility of a lowcost tracking GPS device for monitoring terrestrial mammal movements. *Animal Biotelemetry*, 11, 35.
- Muller, Z., Bercovitch, F., Brand, R., Brown, D., Brown, M.B., Bolger, D., Carter, K., Deacon, F., Doherty, J., Fennessy, J., Fennessy, S., Hussein, A.A., Lee, D., Marais, A., Strauss, M., Tutchings, A. & Wube, T. (2018). *Giraffa camelopardalis* (amended version of 2016 assessment) (e. T9194A136266699). *The IUCN Red List of Threatened Species*. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T91 94A136266699.en
- Muneza, A., Doherty, J.B., Hussein, A.A., Fennessy, J., Marais, A., O'Connor, D. & Wube, T. (2018). *Giraffa* camelopardalis ssp. *Reticulata* (p. e.T88420717A88 420720). *The IUCN Red List of Threatened Species*. http://dx.doi.org/10.2305/IUCN.UK.20182.RLTS.T8 8420717A88420720.en
- Nyathi, M.J.J. (2020). Ecology of the South African giraffe (*Giraffa camelopardalis giraffa*) across a land-use gradient in central KwaZulu-Natal, South Africa. (M.Sc. thesis). Pietermaritzburg, South Africa: University of KwaZulu-Natal.
- Owen-Smith, N. (2014). Spatial ecology of large herbivore populations. *Ecography*, 37, 416–430. https://doi.org/10.1111/j.1600-0587.2013.00613.x
- Pastorini, J., Prasad, T., Leimgruber, P., Isler, K. &

Fernando, P. (2015). Elephant GPS tracking collars: is there a best? *Gajah*, 43, 15–25.

- Ranc, N., Moorcroft, P.R., Ossi, F. & Cagnacci, F. (2021). Experimental evidence of memory-based foraging decisions in a large wild mammal. *Proceedings of the National Academy of Sciences*, 118, e201485 6118.
- Razal, C. (2016, April 11). Giraffe activity. CZS Insights. https://www.czs.org/giraffeactivity-2
- Razal, C. (2017, June 6). Giraffe project update. CZS Insights.

https://www.czs.org/giraffe-study-2

- Scheepers, J.L. (1992). Habitat selection and demography of a giraffe population in northern Namib desert, Namibia. *Ongulés/Ungulates*, 91, 223–228.
- Scheijen, C.P., Van der Merwe, S., Ganswindt, A. & Deacon, F. (2021). Anthropogenic influences on distance traveled and vigilance behavior and stressrelated endocrine correlates in free-roaming giraffes. *Animals*, 11(5), 1239.
- Schlippe, J.L., Rosell, F. & Mayer, M. (2018). Performance of GPS units for deployment on semiaquatic animals. *PLOS ONE*, 13(12), e0207938. https://doi.org/10.1371/journal.pone.0207938
- Seidel, D.P., Dougherty, E., Carlson, C. & Getz, W.M. (2018). Ecological metrics and methods for GPS movement data. *International Journal of Geographical Information Science*, 32(11), 2272–2293.
- Shorrocks, B. (2016). The giraffe: biology, ecology, evolution and behaviour. John Wiley & Sons.
- Suraud, J.P. (2011). Identifier les contraintes pour la conservation des dernières girafes de l'Afrique de l'Ouest: Déterminants de la dynamique de la population et patron d'occupation spatiale. (Ph.D. thesis). Villeurbanne, France: Université Claude Bernard-Lyon I.
- Wild, T.A., van Schalkwyk, L., Viljoen, P., Heine, G., Richter, N., Vorneweg, B., Koblitz, J. C., Dechmann, D.K.N., Rogers, W., Partecke, J., Linek, N., Volkmer, T., Gregersen, T., Havmøller, R.W., Morelle, K., Daim, A., Wiesner, M., Wolter, K., Fiedler, W., ... Wikelski, M. (2023). A multi-species evaluation of digital wildlife monitoring using the Sigfox IoT network. *Animal Biotelemetry*, 11, 13.

https://doi.org/10.1186/s40317-023-00326-1

Wube, T., Doherty, J., Fennessy, J. & Marais, A. (2018). Giraffa camelopardalis ssp. Camelopardalis (e. T88420707A88420710). The IUCN Red List of Threatened Species.

https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T88 420707A88420710.en

Responsible Editor: M.W. Hayward

68

Supplementary material to:

Courtney J. Marneweck, Michael B. Brown, Stephanie Fennessy, Sara Ferguson, Rigardt Hoffman, Arthur B. Muneza & Julian Fennessy

The evolution of tracking technology for wild giraffe (*Giraffa* spp.)

African Journal of Wildlife Research 54: 46–68 (2024)

Table S1. Results from Web of Science literature review.

Table S2. List of permit numbers and agreements for Giraffe Conservation Foundationgiraffe GPS tracking across Africa.

Table S3. Performance details of each Giraffe Conservation Foundation tracking unit deployed across Africa.

Table S1. The Web of Science literature search export (16 November 2023) with annotations for relevance to this paper (i.e., include a giraffe being fitted with a GPS unit).

								WOS	EXPOR	T			AUT	HOR F	ILTERS
Authors	Article Title	Source Title	ISSN	eISSN	Year	Vol	Iss	Start Page	End Page	Article Number	DOI Link	UT (Unique WOS ID)	Giraffe	GPS unit	Inclusion
Alasaad, S; Ndeereh, D; Rossi, L; Bornstein, S; Permunian, R; Soriguer, RC; Gakuya, F	The opportunistic Sarcoptes scabiei: A new episode from giraffe in the drought-suffering Kenya	VETERINARY PARASITOLOGY	0304- 4017	1873- 2550	2012	185	2	359	363		http://dx.doi.org/10.1016/j.vetpar.2011.10.039	WOS:000302839700050	Y	N	N
Alexander, KA; Blackburn, JK; Vandewalle, ME; Pesapane, R; Baipoledi, EK; Elzer, PH	Buffalo, Bush Meat, and the Zoonotic Threat of Brucellosis in Botswana	PLOS ONE	1932- 6203		2012	7	3			e32842	http://dx.doi.org/10.1371/journal.pone.0032842	WOS:000303062000017	Y	Ν	Ν
Assémat, F; Gendron, E; Hammer, F	The FALCON concept:: multi- object adaptive optics and atmospheric tomography for integral field spectroscopy -: principles and performance on an 8-m telescope	MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY	0035- 8711	1365- 2966	2007	376	1	287	312		http://dx.doi.org/10.1111/j.1365-2966.2007.11422.x	WOS:000244886400038	Ν	NA	Ν
Babusiaux, C; Katz, D; Hill, V; Royer, F; Gómez, A; Arenou, F; Combes, F; Di Matteo, P; Gilmore, G; Haywood, M; Robin, AC; Rodriguez- Fernandez, N;	Metallicity and kinematics of the bar in situ	ASTRONOMY & ASTROPHYSICS	1432- 0746		2014	563				A15	http://dx.doi.org/10.1051/0004-6361/201323044	WOS:000333798000015	Ν	NA	Ν

Sartoretti, P; Schultheis, M												
Badlangana, NL; Bhagwandin, A; Fuxe, K; Manger, PR	Observations on the giraffe central nervous system related to the corticospinal tract, motor cortex and spinal cord: What difference does a long neck make?	NEUROSCIENCE	0306- 4522	1873- 7544	2007	148	2	522	534	http://dx.doi.org/10.1016/j.neuroscience.2007.06.005 WOS:000249638100019 Y	Ν	Ν
Baiano, C; Job, X; Santangelo, G; Auvray, M; Kirsch, LP	Interactions between interoception and perspective- taking: Current state of research and future directions	NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS	0149- 7634	1873- 7528	2021	130		252	262	http://dx.doi.org/10.1016/j.neubiorev.2021.08.007 WOS:000709411900005 N	NA	Ν
Battaglia, G; Tolstoy, E; Helmi, A; Irwin, MJ; Letarte, B; Jablonka, P; Hill, V; Venn, KA; Shetrone, MD; Arimoto, N; Primas, F; Kaufer, A; Francois, P; Szeifert, T; Abel, T; Sadakane, K	The DART imaging and CaT survey of the Fornax dwarf spheroidal galaxy	ASTRONOMY & ASTROPHYSICS	1432- 0746		2006	459	2	423	U148	http://dx.doi.org/10.1051/0004-6361:20065720 WOS:000241822800012 N	NA	Ν
Baxter, PWJ; Getz, WM	A model-framed evaluation of elephant effects on tree and fire dynamics in African savannas	ECOLOGICAL APPLICATIONS	1051- 0761	1939- 5582	2005	15	4	1331	1341	http://dx.doi.org/10.1890/02-5382 WOS:000230876900021 N	NA	N
Bercovitch, FB; Berry, PSM	Reproductive life history of Thornicroft's giraffe in Zambia	AFRICAN JOURNAL OF ECOLOGY	0141- 6707	1365- 2028	2010	48	2	535	538	http://dx.doi.org/10.1111/j.1365-2028.2009.01145.x WOS:000277320000027 Y	N	N
Berger, J	Population constraints associated with the use of black rhinos as an umbrella species for desert herbivores	CONSERVATION BIOLOGY	0888- 8892		1997	11	1	69	78	http://dx.doi.org/10.1046/j.1523-1739.1997.95481.x WOS:A1997WJ11100013 N	NA	N

Berry, PSM; Bercovitch, FB	Leadership of herd progressions in the Thornicroft's giraffe of Zambia	AFRICAN JOURNAL OF ECOLOGY	0141- 6707	1365- 2028	2015 53	3 2	175	182		http://dx.doi.org/10.1111/aje.12173	WOS:000353453300007	Y	N	N
Bond, ML; König, B; Ozgul, A; Farine, DR; Lee, DE	Socially Defined Subpopulations Reveal Demographic Variation in a Giraffe Metapopulation	JOURNAL OF WILDLIFE MANAGEMENT	0022- 541X	1937- 2817	2021 85	5 5	920	931		http://dx.doi.org/10.1002/jwmg.22044	WOS:000637854800001	Y	Ν	Ν
Bond, ML; Lee, DE; Ozgul, A; Farine, DR; König, B	Leaving by staying: Social dispersal in giraffes	JOURNAL OF ANIMAL ECOLOGY	0021- 8790	1365- 2656	2021 90) 12	2755	2766		http://dx.doi.org/10.1111/1365-2656.13582	WOS:000727071800006	Y	Ν	Ν
Bond, ML; Strauss, MKL; Lee, DE	Soil Correlates and Mortality from Giraffe Skin Disease in Tanzania	JOURNAL OF WILDLIFE DISEASES	0090- 3558	1943- 3700	2016 52	2 4	953	958		http://dx.doi.org/10.7589/2016-02-047	WOS:000385846300026	Y	Ν	N
Bond, WJ; Loffell, D	Introduction of giraffe changes acacia distribution in a South African savanna	AFRICAN JOURNAL OF ECOLOGY	0141- 6707	1365- 2028	2001 39	93	286	294		http://dx.doi.org/10.1046/j.1365-2028.2001.00319.x	WOS:000170905600007	Y	Ν	N
Börger, L	Research Highlight: Social dispersal in giraffes	JOURNAL OF ANIMAL ECOLOGY	0021- 8790	1365- 2656	2021 90) 12	2726	2728		http://dx.doi.org/10.1111/1365-2656.13624	WOS:000727071800003	Y	Ν	N
Brandes, S; Sicks, F; Berger, A	Behaviour Classification on Giraffes (Giraffa camelopardalis) Using Machine Learning Algorithms on Triaxial Acceleration Data of Two Commonly Used GPS Devices and Its Possible Application for Their Management and Conservation	SENSORS		1424- 8220	2021 2	6			2229	http://dx.doi.org/10.3390/s21062229	WOS:000652711400001	Υ	Υ	Y
Broekman, MJE; Hilbers, JP; Huijbregts, MAJ; Mueller,	Evaluating expert- based habitat suitability information of	GLOBAL ECOLOGY AND BIOGEOGRAPHY	1466- 822X	1466- 8238	2022 31	8	1526	1541		http://dx.doi.org/10.1111/geb.13523	WOS:000792120800001	Y	Y	Y

T; Ali, AH;	terrestrial
Andrén, H;	mammals with
Altmann, J;	GPS-tracking data
Aronsson, M;	
Attias, N;	
Bartlam-	
Brooks, HLA;	
van Beest,	
FM; Belant,	
JL; Beyer, DE;	
Bidner, L;	
Blaum, N;	
Boone, RB;	
Boyce, MS;	
Brown, MB;	
Cagnacci, F;	
Cerne, R;	
Chamaillé-	
Jammes, S;	
Dejid, N;	
Dekker, J;	
Desdiez, ALJ;	
SI : Eonnoccu	
J. Fichtel C.	
Fischer C	
Fisher IT	
Fischhoff, I:	
Ford. AT:	
Frvxell, JM:	
Gehr, B;	
Goheen, JR;	
Hauptfleisch,	
M; Hewison,	
AJM; Hering,	
R; Heurich,	
M; Isbell, LA;	
Janssen, R;	
Jeltsch, F;	
Kaczensky, P;	
Kappeler, PM;	
Krofel, M;	
LaPoint, S;	
Latham,	
ADM; Linnell,	
JDC;	
Marknam,	
AC; Mattisson I.	
Madici ED	
Mourae CD.	
Van Moorter	

B; Morato,													
RG; Morellet,													
N; Mysterud,													
A; Mwiu, S;													
Odden, J;													
Olson, KA;													
Ornicans, A;													
Pagon, N;													
Panzacchi, M;													
Persson, J;													
Petroelje, T;													
Rolandsen,													
CM; Roshier,													
D; Rubenstein,													
D; Saïd, S;													
Salemgareyev,													
AR; Sawyer,													
H: Schmidt.													
NM; Selva, N;													
Sergiel, A:													
Stabach, J:													
Stacy-Dawes.													
J: Stewart.													
FEC: Stiegler.													
I: Strand, O:													
Sundaresan, S:													
Svoboda NI:													
Ullmann W													
Voigt II.													
Wall I													
Wikelski M·													
Wilmers CC													
Zieba E													
Zwijacz-													
Kozica T													
Schipper AM:													
Tucker MA													
Prondum ET:	DECULATION	IOURNAL OF	1990	2000 5	0 1	00		00		WOS:000271022100508	v	N	N
Wang T	OF BLOOD	PHYSIOLOGICAL	1000- 6546	2009 5	9 1	99		7 7		w03.000271023100308	1	IN	IN
Wang, 1,	DESCUDE	SCIENCES	0540										
Sachar NU:	DUDING HEAD	SCIENCES											
Nuccord II	MOVEMENT IN												
Nygaaru, H;													
Kastberg, K;													
Buni, K;	ANESTHETIZED												
Aalkjaer, C	GIKAFFE	EAGED IOUDNAS	0802	2007 2	1 /		100	A 1 400		WOS-000245709705242	V	N	N
Brondum, ET;	Regulation of	FASEB JOUKNAL	0892-	2007 2	1 6	Al	400 1	A1400		w US:000245/08/05343	r	IN	IN
wang, T;	blood pressure		6638										
Hasenkam, M;	during head												
Nygaard, H;	movement in the												
Secher, NH;	anaesthetized												
Petersen, KK;	gıraffe												

Buhl, R; Aalkjzær, C Brown, MB; Bolger, DT	Male-Biased Partial Migration in a Giraffe	FRONTIERS IN ECOLOGY AND EVOLUTION	2296- 701X	2020 7				524	http://dx.doi.org/10.3389/fevo.2019.00524	WOS:000531596200001	Y	Y	Y
Brown, MB; Fennessy, JT; Crego, RD; Fleming, CH; Alves, J; Brandlova, K; Fennessy, S; Ferguson, S; Hauptfleisch, M; Hejcmanova, P; Hoffman, R; Leimgruber, P; Masiaine, S; McQualter, K; Mueller, T; Muller, B; Muneza, A; O'Connor, D; Olivier, AJ; Rabeil, T; Seager, S; Stacy-Dawes, J; van Schalkwyk, L; Stabach, J	Population Ranging behaviours across ecological and anthropogenic disturbance gradients: a pan- African perspective of giraffe (Giraffa spp.) space use	PROCEEDINGS OF THE ROYAL SOCIETY B- BIOLOGICAL SCIENCES	0962- 1471- 8452 2954	2023 290	2001			20230912	http://dx.doi.org/10.1098/rspb.2023.0912	WOS:001016116300001	Υ	Υ	Υ
Burger, AL; Fennessy, J; Fennessy, S; Dierkes, PW	Nightly selection of resting sites and group behavior reveal antipredator strategies in giraffe	ECOLOGY AND EVOLUTION	2045- 7758	2020 10	6	2917	2927		http://dx.doi.org/10.1002/ece3.6106	WOS:000521040300014	Y	N	N
Burger, AL; Hartig, J; Dierkes, PW	Shedding light into the dark: Age and light shape nocturnal activity and sleep behaviour of giraffe	APPLIED ANIMAL BEHAVIOUR SCIENCE	0168- 1872- 1591 9045	2020 229				105012	http://dx.doi.org/10.1016/j.applanim.2020.105012	WOS:000557873400002	Y	Ν	Ν
Cameron, EZ; Du Toit, JT	Social influences on vigilance behaviour in giraffes, Giraffa camelopardalis	ANIMAL BEHAVIOUR	0003- 3472	2005 69	6	1337	1344		http://dx.doi.org/10.1016/j.anbehav.2004.08.015	WOS:000230036400012	Y	Ν	Ν

Carretta, E;	Na-O	ASTRONOMY &	0004-		2009 505	1	117	138		http://dx.doi.org/10.1051/0004-6361/200912096	WOS:000270436000013	Ν	NA	Ν
Bragaglia, A;	anticorrelation	ASTROPHYSICS	6361											
Gratton, RG;	and HB VII. The													
Lucatello, S;	chemical													
Catanzaro, G;	composition of													
Leone, F;	first and second-													
Claudi P:	15 globular													
D'Orazi V:	clusters from													
Momany Y	GIR AFFF spectra													
Ortolani S	GIA II E spectra													
Pancino E:														
Piotto, G:														
Recio-Blanco,														
A; Sabbi, E														
Carter, KD;	Fission-fusion	ANIMAL	0003-	1095-	2013 85	2	385	394		http://dx.doi.org/10.1016/j.anbehav.2012.11.011	WOS:000314683000012	Y	Ν	Ν
Seddon, JM;	dynamics in wild	BEHAVIOUR	3472	8282										
Frère, CH;	giraffes may be													
Carter, JK;	driven by kinship,													
Goldizen, AW	spatial overlap													
	and individual													
	social preferences		0000	1005	2010 157		10	25			W/05 000 102700 (00002		N 7	
Castles, MP;	Relationships	ANIMAL	2472	1095-	2019 157		13	25		http://dx.doi.org/10.1016/j.anbehav.2019.08.003	WOS:000493780600003	Y	N	N
Brand, R;	between male	BEHAVIOUR	3472	8282										
Maron M:	giranes colour,													
Carter KD	age and sociability													
Goldizen AW														
Chirima, GJ:	Changing	KOEDOE	0075-	2071-	2012 54	1			1009	http://dx.doi.org/10.4102/koedoe.v54i1.1009	WOS:000326033200001	Y	Ν	Ν
Owen-Smith.	distributions of	HOLD OL	6458	0771	2012 01	-			1000			•		
N; Erasmus,	larger ungulates in													
BFN	the Kruger													
	National Park													
	from ecological													
	aerial survey data													
Ciofolo, I; Le	The feeding	MAMMALIA	0025-	1864-	2002 66	2	183	194		http://dx.doi.org/10.1515/mamm.2002.66.2.183	WOS:000177159800003	Y	Ν	Ν
Pendu, Y	behaviour of		1461	1547										
Calman Di	giraffe in Niger	IOUDNAL OF	0052	1460	2007 272	1	21	20		http://doi.doi.org/10.1111/j.1460.7000.2007.00202.co	WOS-000240420800004	V	NT	N
Codron, D;	Diets of savanna	JOUKNAL OF	0952-	1409-	2007 273	1	21	29		http://dx.doi.org/10.1111/j.1469-7998.2007.00292.x	WOS:000249429800004	ĭ	IN	IN
Lee Thorn	stable carbon	2001001	0309	1998										
IA.	isotope													
Sponheimer.	composition of													
M: de Ruiter.	faeces													
D; Sealy, J;														
Grant, R;														
Fourie, N														
Cohen, RE;	Deep Hubble	ASTRONOMICAL	0004-	1538-	2018 156	2			41	http://dx.doi.org/10.3847/1538-3881/aac889	WOS:000437755000001	Ν	NA	Ν
Mauro, F;	Space Telescope	JOURNAL	6256	3881										
Alonso-	Imaging of													
García, J;	Globular Clusters													
Hempel, M;	toward the													

Sarajedini, A; Ordoñez, AJ; Geisler, D; Kalirai, JS	Galactic Bulge: Observations, Data Reduction, and Color- magnitude													
Coimbra, JP; Bertelsen, MF; Manger, PR	Diagrams Retinal ganglion cell topography and spatial resolving power in the river	JOURNAL OF COMPARATIVE NEUROLOGY	0021- 9967	1096- 9861	2017 52:	5 11	2499	2513		http://dx.doi.org/10.1002/cne.24179	WOS:000402832600004	Ν	NA	N
Coimbra, JP; Hart, NS; Collin, SP; Manger, PR	hippopotamus (Hippopotamus amphibius) Scene from above: Retinal ganglion cell topography and spatial resolving power in	JOURNAL OF COMPARATIVE NEUROLOGY	0021- 9967	1096- 9861	2013 52	9	2042	2057		http://dx.doi.org/10.1002/cne.23271	WOS:000318045400005	Y	N	N
Colston, KPJ; Johnson, CL; Nyugha, D; Goué, AM;	the graffe (Giraffa camelopardalis) Viability analysis of Kordofan giraffe (Giraffa camelopardalis ortiguerum) in a	AFRICAN JOURNAL OF ECOLOGY	0141- 6707	1365- 2028	2023					http://dx.doi.org/10.1111/aje.13196	WOS:001042065800001	Y	N	N
Crego, RD; Fennessy, J; Brown, MB; Connette, G; Stacy-Dawes	antiquorum) in a protected area in Cameroon Combining species distribution models and moderate	ANIMAL CONSERVATION	1367- 9430	1469- 1795	2023					http://dx.doi.org/10.1111/acv.12894	WOS:001034354800001	Y	Y	Y
Crego, RD; Ogutu, JO; Wells, HBM; Ojwang, GO; Martins, DJ; Leimgruber, P; Stabach, JA	resolution satellite information to guide conservation programs for reticulated giraffe Spatiotemporal dynamics of wild herbivore species richness and occupancy across a savannah rangeland: Implications for	BIOLOGICAL CONSERVATION	0006- 3207	1873- 2917	2020 24:	2			108436	http://dx.doi.org/10.1016/j.biocon.2020.108436	WOS:000517855100025	Y	N	N
Crego, RD; Wells, HBM; Connette, G;	conservation Monitoring spatiotemporal dynamics of large	AFRICAN JOURNAL OF ECOLOGY	0141- 6707	1365- 2028	2023					http://dx.doi.org/10.1111/aje.13219	WOS:001084151600001	Y	N	N

Stabach, JA; Soit, N; Thompson, S	herbivores across an African rangeland using hierarchical multi- species distance														
Crego, RD; Wells, HBM; Ndung'u, KS; Evans, L; Nduguta, RN; Chege, MA; Brown, MB; Ogutu, JO; Ojwang, GO; Fennessy, J; O'Connor, D; Stacy-Dawes, J; Rubenstein, DI; Martins, DJ; Leimgruber, P; Stabach, JA	Samping Moving through the mosaic: identifying critical linkage zones for large herbivores across a multiple- use African landscape	LANDSCAPE ECOLOGY	0921-	1572- 9761	2021	36	5	1325	1340		http://dx.doi.org/10.1007/s10980-021-01232-8	WOS:000628723700001	Υ	Υ	Υ
Crossley, DA; Burggren, WW; Reiber, CL; Altimiras, J; Rodnick, KJ	Mass Transport: Circulatory System with Emphasis on Nonendothermic Species	COMPREHENSIVE PHYSIOLOGY	2040- 4603		2017	7	1	17	66		http://dx.doi.org/10.1002/cphy.c150010	WOS:000394186300002	Ν	NA	N
Curry, CJ; White, PA; Derr, JN	Genetic analysis of African lions (Panthera leo) in Zambia support movement across anthropogenic and geographical barriers	PLOS ONE	1932- 6203		2019	14	5			e0217179	http://dx.doi.org/10.1371/journal.pone.0217179	WOS:000469759100034	Ν	NA	Ν
Cusack, JJ; Dickman, AJ; Kalyahe, M; Rowcliffe, JM; Carbone, C; MacDonald, DW; Coulson, T	Revealing kleptoparasitic and predatory tendencies in an African mammal community using camera traps: a comparison of spatiotemporal approaches	OIKOS	0030- 1299 (1600- 0706	2017	126	6	812	822		http://dx.doi.org/10.1111/oik.03403	WOS:000402820600006	Ν	NA	Ν
Damiani, F; Bonito, R; Prisinzano, L; Zwitter, T; Bayo, A;	The Gaia-ESO Survey: dynamics of ionized and neutral gas in the	ASTRONOMY & ASTROPHYSICS	1432- 0746		2017	604				A135	http://dx.doi.org/10.1051/0004-6361/201730986	WOS:000408480100128	N	NA	Ν

Kalari, V; Jiménez-	Lagoon nebula (M 8)													
Esteban, FM;														
Costado, MT;														
Jofré, P;														
Randich, S;														
Flaccomio, E;														
Lanzaranie,														
AC, Laluo, C, Morbidelli, L														
Zaggia S														
Deacon F	Movement	AFRICAN	0141-	1365-	2018 56	3	620	628		http://dx.doi.org/10.1111/aje.12514	WOS:000440898700022	v	V	v
Bercovitch	patterns and herd	JOURNAL OF	6707	2028	2010 50	5	020	020		<u>nup.//ux.uoi.org/10.1111/ujc.12514</u>	1105.000440090700022	1	1	1
FB	dynamics among	FCOLOGY	0/0/	2020										
15	South African	2002001												
	giraffes (Giraffa													
	camelopardalis													
	giraffa)													
Deacon, F;	Resources and	ANIMALS	2076-		2023 13	13			2188	http://dx.doi.org/10.3390/ani13132188	WOS:001031150700001	Y	Y	Y
Smit, GN;	Habitat		2615											
Grobbelaar, A	Requirements for													
	Giraffes' (Giraffa													
	camelopardalis)													
	Diet Selection in													
	the Northwestern													
	Africo													
Deacon F	Climatic factors	AFRICAN	0141-	1365-	2023					http://dx.doi.org/10.1111/aje.13204	WOS:001051730000001	v	v	v
Smit GN [.]	affecting seasonal	IOURNAL OF	6707	2028	2023					<u>nup.//ux.uoi.org/10.1111/ujc.15204</u>	WOB.001051750000001	1	1	1
Grobbelaar, A	movements of	FCOLOGY	0/0/	2020										
Grooosiaa, II	giraffes (Giraffa	2002001												
	camelopardalis) in													
	a semi-arid region													
	of South Africa													
Deacon, F;	Spatial ecology	BASIC AND	1439-	1618-	2017 21		55	65		http://dx.doi.org/10.1016/j.baae.2017.04.003	WOS:000406938700006	Y	Y	Y
Smit, N	and habitat use of	APPLIED	1791	0089										
	giraffe (Giraffa	ECOLOGY												
	camelopardalis) in													
Dehattista	South Africa	MONTHIN	0025	1265	2017 460	2	1507	1611		http://dy.doi.org/10.1002/mpros/sty047	WOS-000406620100025	N	NIA	N
VP: Ness M:	stellar populations	MONTICES OF THE	8711	2066	2017 409	2	1387	1011		http://dx.doi.org/10.1095/hillras/stx947	WOS:000408629100023	IN	INA	IN
Gonzalez OA:	by an evolving	ROYAI	0/11	2700										
Freeman, K:	bar: implications	ASTRONOMICAL												
Zoccali, M:	for the bulge of	SOCIETY												
Minniti, D	the Milky Way	boomin												
Dekker, B;	Habitat	SOUTH AFRICAN	0379-		1996 26	4	117	122			WOS:A1996XB57400006	Y	Ν	Ν
vanRooyen,	partitioning by	JOURNAL OF	4369											
N; Bothma, JD	ungulates on a	WILDLIFE												
	game ranch in the	RESEARCH												
	Mopani veld													
D'haen, M;	Population	ECOLOGY AND	2045-		2019 9	19	11395	11405		http://dx.doi.org/10.1002/ece3.5640	WOS:000485557000001	Y	Y	Y
Fennessy, J;	structure and	EVOLUTION	1158											

Stabach, JA; Brandlová, K	spatial ecology of Kordofan giraffe in Garamba National Park, Democratic Republic of Congo												
Di Matteo, P; Haywood, M; Gómez, A; van Damme, L; Combes, F; Hallé, A; Semelin, B; Lehnert, MD; Katz, D	Mapping a stellar disk into a boxy bulge: The outside-in part of the Milky Way bulge formation	ASTRONOMY & ASTROPHYSICS	0004- 1432- 6361 0746	2014 567				A122	http://dx.doi.org/10.1051/0004-6361/201322958	WOS:000341185300035	Ν	NA	Ν
Doherty, M; Arnaboldi, M; Das, P; Gerhard, O; Aguerri, JAL; Ciardullo, R; Feldmeier, JJ; Freeman, KC; Jacoby, GH; Murante, G	The edge of the M87 halo and the kinematics of the diffuse light in the Virgo cluster core	ASTRONOMY & ASTROPHYSICS	1432- 0746	2009 502	3	771	786		http://dx.doi.org/10.1051/0004-6361/200811532	WOS:000268944000005	Ν	NA	Ν
Dupuis- Desormeaux, M; Davidson, Z; Pratt, L; Mwololo, M; MacDonald, SE	Testing the effects of perimeter fencing and elephant exclosures on lion predation patterns in a Kenyan wildlife conservancy	PEERJ	2167- 8359	2016 4				e1681	http://dx.doi.org/10.7717/peerj.1681	WOS:000370940400004	Ν	NA	Ν
Dupuis- Desormeaux, M; Kaaria, TN; Mwololo, M; Davidson, Z; MacDonald, SE	A ghost fence- gap: surprising wildlife usage of an obsolete fence crossing	PEERJ	2167- 8359	2018 6				e5950	http://dx.doi.org/10.7717/peerj.5950	WOS:000452454000006	Y	Ν	Ν
Eckenwiler, L	Displacement and solidarity: An ethic of place- making	BIOETHICS	0269- 1467- 9702 8519	2018 32	9	562	568		http://dx.doi.org/10.1111/bioe.12538	WOS:000450332600004	N	NA	Ν
Epinat, B; Amram, P; Balkowski, C; Marcelin, M	Evidence for strong dynamical evolution in disc galaxies through the last 11 Gyr.	MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY	0035- 8711	2010 401	4	2113	2147		http://dx.doi.org/10.1111/j.1365-2966.2009.15688.x	WOS:000273687800001	N	NA	N

	GHASP VIII - a local reference													
	sample of rotating disc galaxies for high-redshift studies													
Fennessy, JT; Leggett, KEA; Schneider, S	Distribution and status of the desert-dwelling giraffe (Giraffa camelopardalis angolensis) in northwestern Namibia	AFRICAN ZOOLOGY	1562- 7020		2003 38	1	184	188			WOS:000183535000019	Y	Ν	Ν
Fennessy, J	Home range and seasonal movements of Giraffa camelopardalis angolensis in the northern Namib Desert	AFRICAN JOURNAL OF ECOLOGY	0141- 6707		2009 47	3	318	327		http://dx.doi.org/10.1111/j.1365-2028.2008.00963.x	WOS:000269086000008	Y	Y	Y
Ferry, N; Dray, S; Fritz, H; Valeix, M	Interspecific interference competition at the resource patch scale: do large herbivores spatially avoid elephants while accessing water?	JOURNAL OF ANIMAL ECOLOGY	0021- 8790	1365- 2656	2016 85	6	1574	1585		http://dx.doi.org/10.1111/1365-2656.12582	WOS:000388354200016	Y	Ν	Ν
Flanagan, SE; Brown, MB; Fennessy, J; Bolger, DT	Use of home range behaviour to assess establishment in translocated giraffes	AFRICAN JOURNAL OF ECOLOGY	0141- 6707	1365- 2028	2016 54	3	365	374		http://dx.doi.org/10.1111/aje.12299	WOS:000388181700013	Y	Y	Y
Flores, H; Puech, M; Hammer, F; Garrido, O; Hernandez, O	GIRAFFE multiple integral field units at VLT: A unique tool to recover velocity fields of distant	ASTRONOMY & ASTROPHYSICS	0004- 6361		2004 420	3	L31	L34		http://dx.doi.org/10.1051/0004-6361:20040160	WOS:000223249600004	Ν	NA	N
Fuentes, SAS; De Ridder, J	galaxies RRab Lyrae metallicity gradient in the Galactic bulge	ASTRONOMY & ASTROPHYSICS	0004- 6361	1432- 0746	2014 571				A59	http://dx.doi.org/10.1051/0004-6361/201424436	WOS:000345282600079	Ν	NA	N
Furumatsu, T; Fujii, M; Kodama, Y; Ozaki, T	A giraffe neck sign of the medial meniscus: A characteristic	JOURNAL OF ORTHOPAEDIC SCIENCE	0949- 2658	1436- 2023	2017 22	4	731	736		http://dx.doi.org/10.1016/j.jos.2017.03.013	WOS:000407394700025	Ν	NA	Ν
	finding of the medial meniscus													
---------------------------	-----------------------------------	--------------	---------------	----------	---	-----	-----	----------	---	-----------------------	----	-----	----	
	posterior root tear													
	on magnetic													
	imaging													
GERSTNER,	EVIDENCE OF A	ETHOLOGY AND	0162-	1994 15	4	181	205		http://dx.doi.org/10.1016/0162-3095(94)90013-2	WOS:A1994PH98000001	Y	Ν	Ν	
GE;	TIME	SOCIOBIOLOGY	3095											
GOLDBERG,	CONSTANT													
LJ	WITH													
	MOVEMENT													
	PATTERNS IN 6													
	MAMMALIAN-													
Ginnett, TF:	SPECIES Sex differences in	OECOLOGIA	0029-	1997 110	2	291	300		http://dx.doi.org/10.1007/s004420050162	WOS:A1997WW15700019	Y	N	Ν	
Demment,	giraffe foraging	OLCOLOGIN	8549	1777 110	2	271	500		<u>mp.//dx.doi.org/10.100//300/120000102</u>		1	11	11	
MW	behavior at two													
Circles C	spatial scales	EEMC	0169 1574	2004 28	2	251	200		http://doi.doi.org/10.1016/j.formana.2002.10.005	WOR-00021275200005	N	NTA	N	
Girana, G	dynamics of	MICROBIOLOGY	6445 6976	2004 28	Z	231	200		<u>http://dx.doi.org/10.1010/j.temste.2005.10.005</u>	w05:000221575500005	IN	INA	IN	
	microbial	REVIEWS												
	populations													
	during food													
Gonzalez, OA:	Reddening and	ASTRONOMY &	0004-	2013 552				A110	http://dx.doi.org/10.1051/0004-6361/201220842	WOS:000317912000109	N	NA	Ν	
Rejkuba, M;	metallicity maps	ASTROPHYSICS	6361											
Zoccali, M;	of the Milky Way													
Valent, E; Minniti D:	bulge from V V V and 2MASS													
Tobar, R														
Gonzalez, OA;	Reddening and	ASTRONOMY &	0004-	2012 543				A13	http://dx.doi.org/10.1051/0004-6361/201219222	WOS:000306597200013	Ν	NA	Ν	
Rejkuba, M;	metallicity maps	ASTROPHYSICS	6361											
Valenti, E:	bulge from VVV													
Minniti, D;	and 2MASS II.													
Schultheis, M;	The complete high													
Tobar, R; Chen B	resolution													
Chen, D	and implications													
	for Galactic bulge													
	studies	N OG ONT	1000	2017 12				0151003		WOR 00000 5000 500000				
Gravett, N; Bhagwandin	two wild free-	PLOS ONE	1932- 6203	2017 12	3			e01/1903	http://dx.doi.org/10.13/1/journal.pone.01/1903	WOS:000395983500020	N	NA	IN	
A; Sutcliffe,	roaming African		0203											
R; Landen, K;	elephant													
Chase, MJ;	matriarchs - Does													
Siegel, IM:	make elephants													
Manger, PR	the shortest													
-	mammalian													
	sleepers?													

Grieco, V; Matteucci, F; Pipino, A; Cescutti, G	Chemical evolution of the Galactic bulge: different stellar populations and	ASTRONOMY & ASTROPHYSICS	1432- 0746	2012 548				A60	http://dx.doi.org/10.1051/0004-6361/201219761	WOS:000311901200060	N	NA	N
Guiglion, G; Recio-Blanco, A; de Laverny, P; Kordopatis, G; Hill, V; Mikolaitis, S; Minchev, I; Chiappini, C; Wyse, RFG; Gilmore, G; Randich, S; Feltzing, S; Bensby, T; Flaccomio, E; Bayo, A; Costado, MT; Franciosini, E; Hourihane, A; Jofré, P; Lardo, C; Lewis, J; Lind, K; Magrini, L; Morbidelli, L; Sacco, GG; Ruchti, G; Worley, CC; Zagoia S	possible gradients The Gaia-ESO Survey: New constraints on the Galactic disc velocity dispersion and its chemical dependencies	ASTRONOMY & ASTROPHYSICS	1432- 0746	2015 583				A91	http://dx.doi.org/10.1051/0004-6361/201525883	WOS:000365072200030	Ν	NA	Ν
Gunji, M; Endo, H	Functional cervicothoracic boundary modified by anatomical shifts in the neck of giraffee	ROYAL SOCIETY OPEN SCIENCE	2054- 5703	2016 3	2			150604	http://dx.doi.org/10.1098/rsos.150604	WOS:000377969000020	Y	Ν	Ν
Harper, RM; Kesavan, K	Neuromodulatory Support for Breathing and Cardiovascular Action During Development	FRONTIERS IN PEDIATRICS	2296- 2360	2021 9				753215	http://dx.doi.org/10.3389/fped.2021.753215	WOS:000708867600001	Ν	NA	N
Hart, EE; Fennessy, J; Chari, S; Ciuti, S	Habitat heterogeneity and social factors drive behavioral	JOURNAL OF MAMMALOGY	0022- 1545- 2372 1542	2020 101	1	248	258		http://dx.doi.org/10.1093/jmammal/gyz191	WOS:000518554900026	Y	N	N

Hart, EE; Fennessy, J; Hauenstein, S;	plasticity in giraffe herd-size dynamics Intensity of giraffe locomotor activity is shaped by solar	BEHAVIOURAL PROCESSES	0376- 6357	1872- 8308	2020 17	8			104178	http://dx.doi.org/10.1016/j.beproc.2020.104178	WOS:000555776300016	Y	Y	Y
Hart, EE; Fennessy, J; Rasmussen, HB; Butler- Brown, M;	zeitgebers Precision and performance of an 180 g solar- powered GPS device for	WILDLIFE BIOLOGY	0909- 6396	1903- 220X	2020 20	20 3			wlb.00669	http://dx.doi.org/10.2981/wlb.00669	WOS:000595600400004	Y	Y	Y
Muneza, AB; Ciuti, S Harvie, DS; Smith, RT; Moseley, GL; Meulders, A; Michiels, B;	tracking medium to large-bodied terrestrial mammals Illusion-enhanced Virtual Reality Exercise for Neck Pain A Replicated Single Case Series	CLINICAL JOURNAL OF PAIN	0749- 8047	1536- 5409	2020 36	2	101	109		http://dx.doi.org/10.1097/AJP.00000000000000780	WOS:000506613400006	N	NA	N
Sterling, M Hayward, MW; Kerley,	Prey preferences of the lion	JOURNAL OF ZOOLOGY	0952- 8369	1469- 7998	2005 26	73	309	322		http://dx.doi.org/10.1017/S0952836905007508	WOS:000233183700008	Ν	NA	N
GIH Hilbers, JP; van Langevelde, F; Prins, HHT; Grant, CC; Peel, MJS; Coughenour, MB; de Knegt, HJ; Slotow, R; Smit, IPJ; Kiker, GA; de	(Panthera leo) Modeling elephant-mediated cascading effects of water point closure	ECOLOGICAL APPLICATIONS	1051- 0761	1939- 5582	2015 25	2	402	415		http://dx.doi.org/10.1890/14-0322.1	WOS:000350556400008	Υ	Ν	Ν
Boer, WF Hon-Nami, K; Ueno, S; Endo, H; Nishimura, H; Igarashi, T; David, L; Iwashita, S	A novel Giraffidae- specific interspersed repeat with a microsatellite, originally found in an intron of a ruminant paralogous n97bent gene	GENE	0378-1119	1879- 0038	2004 34	0 2	283	290		http://dx.doi.org/10.1016/j.gene.2004.07.016	WOS:000224607600013	Ν	NA	Ν
Hu, LH; Fernandez,	Longitudinal and transverse variation of trace	ENVIRONMENTAL MONITORING	0167- 6369	1573- 2959	2018 19	0 11			644	http://dx.doi.org/10.1007/s10661-018-7038-z	WOS:000447809200019	Y	N	N

DD <i>G V</i>		())											
DP; Cerling, TE Hua, ALC:	element concentrations in elephant and giraffe hair: implication for endogenous and exogenous contributions Protecting	AND ASSESSMENT PEERJ	2167-	2022 10				e13779	http://dx.doi.org/10.7717/peeri,13779	WOS:000838293600001	Y	N	N
Martin, K; Shen, YZ; Chen, NCL; Mou, CTRE; Sterk, M; Reinhard, B; Reinhard, FF; Lee, SP; Alibhai, S; Jewell, ZC	endangered megafauna through AI analysis of drone images in a low- connectivity setting: a case study from Namibia		8359										
Ishida, Y; de Groot, PJV; Leggett, KEA; Putnam, AS; Fox, VE; Lai, J; Boag, PT; Georgiadis, NJ; Roca, AL	Genetic connectivity across marginal habitats: the elephants of the Namib Desert	ECOLOGY AND EVOLUTION	2045- 7758	2016 6	17	6189	6201		http://dx.doi.org/10.1002/ece3.2352	WOS:000383362700014	Ν	NA	Ν
James, NL; Bond, ML; Ozgul, A; Lee, DE	Trophic processes constrain seasonal ungulate distributions at two scales in an East African savanna	JOURNAL OF MAMMALOGY	0022- 1545- 2372 1542	2022 103	4	956	969		http://dx.doi.org/10.1093/jmammal/gyac050	WOS:000809428900001	Y	Ν	Ν
Kasozi, H; Linden, DW; Roloff, GJ; Montgomery, RA	Evaluating the prevalence and spatial distribution of giraffes injured by non-target poaching	JOURNAL OF ZOOLOGY	0952- 1469- 8369 7998	2023 319	2	152	162		http://dx.doi.org/10.1111/jzo.13033	WOS:000880070200001	Y	Ν	Ν
Kolomiecas, E; Dobrovolskas, V; Kucinskas, A; Bonifacio, P; Korotin, S	Abundance of zirconium in the globular cluster 47 Tucanae: a possible Zr-Na correlation?	ASTRONOMY & ASTROPHYSICS	0004- 1432- 6361 0746	2022 660				A46	http://dx.doi.org/10.1051/0004-6361/202141970	WOS:000781443500009	N	NA	N
Le Pendu, Y; Ciofolo, I	Seasonal movements of giraffes in Niger	JOURNAL OF TROPICAL ECOLOGY	0266- 4674	1999 15	3	341	353			WOS:000082152100008	Y	Ν	N
Lee, DE; Bolger, DT	Movements and source-sink dynamics of a	POPULATION ECOLOGY	1438- 1438- 3896 390X	2017 59	2	157	168		http://dx.doi.org/10.1007/s10144-017-0580-7	WOS:000404903900007	Y	N	Ν

Lee, DE; Bond, ML	Masai giraffe metapopulation The Occurrence and Prevalence of Giraffe Skin Disease in Protected Areas of	JOURNAL OF WILDLIFE DISEASES	0090- 3558	1943- 3700	2016 52	3	753	755	http://dx.doi.org/10.7589/2015-09-247	WOS:000381528700048	Y	N	N
Lee, DE; Bond, ML; Kissui, BM; Kiwango, YA;	Northern Tanzania Spatial variation in giraffe demography: a test of 2	JOURNAL OF MAMMALOGY	0022- 2372	1545- 1542	2016 97	4	1015	1025	http://dx.doi.org/10.1093/jmammal/gyw086	WOS:000383262100001	Y	N	N
Bolger, DT Lee, DE; Lohay, GG; Madeli, J; Cavener, DR:	paradigms Masai giraffe population change over 40 years in Arusha National	AFRICAN JOURNAL OF ECOLOGY	0141- 6707	1365- 2028	2023				http://dx.doi.org/10.1111/aje.13115	WOS:000917954700001	Y	N	N
Bond, ML Leggett, K; Fennessy, J; Schneider, S	Park A study of animal movement in the Hoanib River	AFRICAN ZOOLOGY	1562- 7020	2224- 073X	2004 39	1	1	11		WOS:000223231700001	Y	N	N
Leggett, K; Fennessy, J; Schneider, S	catchment, northwestern Namibia Does land use matter in an arid Environment? A case study from the Hoanib River	JOURNAL OF ARID ENVIRONMENTS	0140- 1963	1095- 922X	2003 53	4	529	543	http://dx.doi.org/10.1006/jare.2002.1066	WOS:000181147200008	Y	N	N
Leggett, K	catchment, north- western Namibia Daily and hourly movement of male desert-dwelling	AFRICAN JOURNAL OF ECOLOGY	0141- 6707	1365- 2028	2010 48	1	197	205	http://dx.doi.org/10.1111/j.1365-2028.2009.01101.x	WOS:000274199800025	N	NA	N
Leggett, KEA	elephants Home range and seasonal movement of elephants in the Kunene Region, northwestern	AFRICAN ZOOLOGY	1562- 7020	2224- 073X	2006 41	1	17	36	http://dx.doi.org/10.3377/1562- 7020(2006)41[17:HRASMO]2.0.CO;2	WOS:000239363200003	Ν	NA	Ν
LeGrice, RJ; Tezanos-Pinto, G; de Villemereuil, P; Holwell, GI; Painting, CJ	Namibia Directional , selection on body size but no apparent survival cost to being large in wild New Zealand giraffe weevils	EVOLUTION	0014- 3820	1558- 5646	2019 73	4	762	776	http://dx.doi.org/10.1111/evo.13698	WOS:000467993300010	Ν	NA	Ν

Levi, M; Lee, DE; Bond, ML; Treydte, AC	Forage selection by Masai giraffes (Giraffa camelopardalis tippelskirchi) at multiple spatial scales	JOURNAL OF MAMMALOGY	0022- 2372	1545- 1542	2022 103	3	737	744		http://dx.doi.org/10.1093/jmammal/gyac007	WOS:000768441600001	Y	N	N
Lucey, M; Hawkins, K; Ness, M; Nelson, T; Debattista, VP; Luna, A; Bensby, T; Freeman, KC; Kobayashi, C	The COMBS Survey - III. The chemodynamical origins of metal- poor bulge stars	MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY	0035- 8711	1365- 2966	2022 509	1	122	144		http://dx.doi.org/10.1093/mnras/stab2878	WOS:000741326000010	Ν	NA	Ν
Mahenya, O; Mathisen, KM; Andreassen, HP; Skarpe, C	Hierarchical foraging by giraffe in a heterogeneous savannah, Tanzania	AFRICAN JOURNAL OF ECOLOGY	0141- 6707	1365- 2028	2016 54	2	136	145		http://dx.doi.org/10.1111/aje.12270	WOS:000376151600002	Y	Ν	Ν
Martínez- Freiría, F; Tarroso, P; Rebelo, H; Brito, JC	Contemporary niche contraction affects climate change predictions for elephants and giraffes	DIVERSITY AND DISTRIBUTIONS	1366- 9516	1472- 4642	2016 22	4	432	444		http://dx.doi.org/10.1111/ddi.12406	WOS:000372883000006	Y	Ν	Ν
Masiaine, S; Pilfold, N; Moll, RJ; O'connor, D; Larpei, L; Stacy-Dawes, J; Ruppert, K; Glikman, JA; Roloff, G; Montgomery, RA	Landscape-level changes to large mammal space use in response to a pastoralist incursion	ECOLOGICAL INDICATORS	1470- 160X	1872- 7034	2021 121				107091	http://dx.doi.org/10.1016/j.ecolind.2020.107091	WOS:000604878500007	Υ	Ν	Ν
McQualter, KN; Chase, MJ; Fennessy, JT; McLeod, SR; Leggett, KEA	Home ranges, seasonal ranges and daily movements of giraffe (Giraffa camelopardalis giraffa) in northern Botswana	AFRICAN JOURNAL OF ECOLOGY	0141- 6707	1365- 2028	2016 54	1	99	102		http://dx.doi.org/10.1111/aje.12232	WOS:000370193500013	Y	Y	Y
Monreal- Ibero, A; Walsh, JR;	He I in the central giant H II region of NGC 5253 A	ASTRONOMY & ASTROPHYSICS	0004- 6361	1432- 0746	2013 553				A57	http://dx.doi.org/10.1051/0004-6361/201321387	WOS:000319858700057	N	NA	N

Westmoquette, MS; Vílchez, JM	2D observational approach to collisional and radiative transfer effects												
Muneza, AB; Linden, DW; Kimaro, MH; Dickman, AJ; Macdonald, DW; Roloff, GJ; Hayward, MW; Montgomery, RA	Exploring the connections between giraffe skin disease and lion predation	JOURNAL OF ZOOLOGY	0952- 8369	1469- 7998	2022 316	1	49	60	http://dx.doi.org/10.1111/jzo.12930	WOS:000698585000001	Y	Ν	N
Muneza, AB; Linden, DW; Montgomery, RA; Dickman, AJ; Roloff, GJ; Macdonald, DW; Fennessy, JT	Examining disease prevalence for species of conservation concern using non-invasive spatial capture- recapture techniques	JOURNAL OF APPLIED ECOLOGY	0021- 8901	1365- 2664	2017 54	3	709	717	http://dx.doi.org/10.1111/1365-2664.12796	WOS:000401239100004	Y	Ν	N
Muneza, AB; Montgomery, RA; Fennessy, JT; Dickman, AJ; Roloff, GJ; Macdonald, DW	Regional variation of the manifestation, prevalence, and severity of giraffe skin disease: A review of an emerging disease in wild and captive giraffe populations	BIOLOGICAL CONSERVATION	0006-3207	1873- 2917	2016 198	i	145	156	http://dx.doi.org/10.1016/j.biocon.2016.04.014	WOS:000377735400017	Y	Ν	Ν
Nataf, DM; Cassisi, S; Athanassoula, E	On the correlation between metallicity and the X-shaped morphology of the Milky Way bulge	MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY	0035- 8711	1365- 2966	2014 442	3	2075	2080	http://dx.doi.org/10.1093/mnras/stu805	WOS:000339924300013	Ν	NA	Ν
Ness, M; Freeman, K; Athanassoula, E; Wylie-de- Boer, E; Bland- Hawthorn, J; Asplund, M; Lewis, GF; Yong, D:	ARGOS - III. Stellar populations in the Galactic bulge of the Milky Way	MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY	0035- 8711		2013 430	2	836	857	http://dx.doi.org/10.1093/mnras/sts629	WOS:000318275000008	Ν	NA	N

Lane, RR; Kiss, LL Nilsson, R; Brandeker, A; Olofsson, G; Fathi, K; Thébault, P;	VLT imaging of the ? Pictoris gas disk	ASTRONOMY & ASTROPHYSICS	0004- 6361	2012 544				A134	http://dx.doi.org/10.1051/0004-6361/201219288	WOS:000308290100134	Ν	NA	N
Liseau, R Njenga, MK; Kemunto, N; Kahariri, S; Holmstrom, L; Oyas, H; Biggers, K; Riddle, A; Gachohi, J; Muturi, M; Mwatondo, A; Gakuya, F; Lekolool, I; Sitawa, R; Apamaku, M; Osoro, E; Widdowson, MA; Munyua, P	High real-time reporting of domestic and wild animal diseases following rollout of mobile phone reporting system in Kenya	PLOS ONE	1932- 6203	2021 16	9			e0244119	http://dx.doi.org/10.1371/journal.pone.0244119	WOS:000707051200002	Υ	Ν	Ν
Noonan, MJ; Fleming, CH; Tucker, MA; Kays, R; Harrison, AL; Crofoot, MC; Abrahms, B; Alberts, SC; Ali, AH; Altmann, J; Antunes, PC; Attias, N; Belant, JL; Beyer, DE; Bidner, LR; Blaum, N; Boone, RB; Caillaud, D; de Paula, RC; de la Torre, JA; Dekker, J; DePerno, CS; Farhadinia, M; Fennessy, J; Fichtel, C; Fischer, C;	Effects of body size on estimation of mammalian area requirements	CONSERVATION BIOLOGY	0888- 1523- 8892 1739	2020 34	4	1017	1028		http://dx.doi.org/10.1111/cobi.13495	WOS:000540800500001	Ν	Ν	Ν

Ford, A;		
Goheen, JR;		
Haymoller		
DW. Lingh		
Rw; Hilsch,		
B; Hurtado, C;		
Isbell, LA;		
Janssen R:		
Jaltaah E		
Jellsch, F;		
Kaczensky, P;		
Kaneko, Y;		
Kappeler, P:		
Katna A:		
Katha, A,		
Kauliman, M;		
Koch, F;		
Kulkarni, A;		
LaPoint S.		
Leimaruber		
P; Macdonald,		
DW;		
Markham.		
AC		
Mc, McMahon L		
Metwianon, L,		
Mertes, K;		
Moorman, CE;		
Morato, RG;		
Mosshrucker		
AM: Mouroo		
AM, Mourao,		
G; O'Connor,		
D; Oliveira-		
Santos, LGR;		
Pastorini I		
Patterson PD:		
Fatterson, BD,		
Rachlow, J;		
Ranglack, DH;		
Reid, N;		
Scantlebury		
DM: Scott		
DM, Scou,		
DM; Selva, N;		
Sergiel, A;		
Songer, M;		
Songsasen, N:		
Stebach IA:		
Stacy-Dawes,		
J; Swingen,		
MB;		
Thompson JJ:		
Illmann W:		
Uninanii, w;		
Vanak, AT;		
Thaker, M;		
Wilson, JW;		
Yamazaki K		
Vamall DW.		
I amen, KW;		

Zieba, F; Zwijacz- Kozica, T; Fagan, WF; Mueller, T; Calabrese, JM O'connor, D; Stacy-Dawes, J; Muneza, A; Fennessy, J; Gobush, K; Chase, MJ; Brown, MB; Bracis, C; Elkan, P; Zaberirou, ARM; Rabeil, T; Rubenstein, D; Becker, MS; Phillips, S; Stabach, JA; Leimgruber, P; Glikman, JA; Ruppert, K: Masiaine	Updated geographic range maps for giraffe, Giraffa spp., throughout sub- Saharan Africa, and implications of changing distributions for conservation	MAMMAL REVIEW	0305- 1838	1365- 2907	2019 49	4	285	299	http://dx.doi.org/10.1111/mam.12165	WOS:000480127900001	Y	Y	Y
S; Mueller, T O'Kane, CAJ; Duffy, KJ; Page, BR; Macdonald, DW	Effects of resource limitation on habitat usage by the browser guild in Hluhluwe- iMfolozi Park,	JOURNAL OF TROPICAL ECOLOGY	0266- 4674	1469- 7831	2013 29	1	39	47	http://dx.doi.org/10.1017/S0266467413000035	WOS:000314991300004	Y	Ν	Ν
Olivier, IR; Tambling, CJ; Müller, L; Radloff, FGT	South Africa Lion (Panthera leo) diet and cattle depredation on the Kuku Group Ranch Pastoralist area in southern Maasailand, Kenya	WILDLIFE RESEARCH	1035- 3712	1448- 5494	2022				http://dx.doi.org/10.1071/WR22019	WOS:000901682800001	Ν	NA	Ν
Penderis, CA; Kirkman, KP	Using partial volumes to estimate available browse biomass in Southern African semi-arid savannas	APPLIED VEGETATION SCIENCE	1402- 2001	1654- 109X	2014 17	3	578	590	http://dx.doi.org/10.1111/avsc.12084	WOS:000337725300019	N	NA	Ν
Périquet, S; Valeix, M;	Individual vigilance of	ANIMAL BEHAVIOUR	0003- 3472	1095- 8282	2010 79	3	665	671	http://dx.doi.org/10.1016/j.anbehav.2009.12.016	WOS:000274587400020	Y	N	N

Loveridge, AJ; Madzikanda, H; Macdonald, DW; Fritz, H	African herbivores while drinking: the role of immediate predation risk and													
Péron, G; Bonenfant, C; Gagnon, R; Mabika, CT	context The two oxpecker species reveal the role of movement rates and foraging intensity in species coexistence	BIOLOGY LETTERS	1744- 9561	1744- 957X	2019 15	10			20190548	http://dx.doi.org/10.1098/rsb1.2019.0548	WOS:000504838100018	Υ	Ν	Ν
Portail, M; Wegg, C; Gerhard, O; Ness, M	Chemodynamical modelling of the galactic bulge and bar	MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY	0035- 8711	1365- 2966	2017 470	1	1233	1252		http://dx.doi.org/10.1093/mnras/stx1293	WOS:000406842600076	N	NA	N
Pretorius, Y; de Boer, WF; Kortekaas, K; van Wijngaarden, M; Grant, RC; Kohi, EM; Mwakiwa, E; Slotow, R; Prins, HHT	Why elephant have trunks and giraffe long tongues: how plants shape large herbivore mouth morphology	ACTA ZOOLOGICA	0001- 7272	1463- 6395	2016 97	2	246	254		http://dx.doi.org/10.1111/azo.12121	WOS:000373023000010	Ν	NA	Ν
Puech, M; Flores, H; Lehnert, M; Neichel, B; Fusco, T; Rosati, P; Cuby, JG; Rousset G	Coupling MOAO with integral field spectroscopy: specifications for the VLT and the E-ELT	MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY	0035- 8711	1365- 2966	2008 390	3	1089	1104		http://dx.doi.org/10.1111/j.1365-2966.2008.13808.x	WOS:000260106400017	Ν	NA	Ν
Puech, M; Flores, H; Yang, Y; Neichel, B; Lehnert, M; Chemin, L; Nesvadba, N; Epinat, B; Amram, P; Balkowski, C; Cesarsky, C; Dannerbauer, H; Alighieri, SDS; Fuentes- Carrera, I; Guiderdoni, B;	Images -: III.: The evolution of the near-infrared Tully-Fisher relation over the last 6 Gyr	ASTRONOMY & ASTROPHYSICS	0004-6361		2008 484	1	173	187		http://dx.doi.org/10.1051/0004-6361:20079313	WOS:000256309400017	Ν	NA	Ν

Kembhavi, A;														
Liang, YC;														
Östlin, G;														
Pozzetti, L;														
Ravikumar,														
CD: Rawat, A:														
Vergani, D:														
Vernet I														
Wozniak H														
Puech M.	A forming disk at	ASTRONOMY &	0004-	1/132-	2009 49	3 3	800	906		http://dx.doi.org/10.1051/0004_6361:200810521	WOS:000262641100014	N	NΔ	N
Hammer E	z 20.6: collapse	ASTROPHYSICS	6361	0746	2007 47	5 5	077	700		<u>Intp://ux.doi.org/10.1051/0004/0501.200010521</u>	05.000202041100014		1 47 1	11
Flores H.	of a gaseous disk	Ab IROT IT DIED	0501	0740										
Neichel B	or major merger													
Vong V	romnant?													
Tallg, T	The Miller Wey	ASTRONOMY &	0004	1422	2021 65	6			A 156	http://dy.doi.org/10.1051/0004_6261/202020020	WOS-000720818000005	N	NI A	N
Querroz,		ASTRONOMIA	0004-	1452-	2021 03	0			A130	<u>http://ux.doi.org/10.1051/0004-0501/202059050</u>	w03:000/30818900003	IN	INA	IN
ABA;	bar and bulge	ASTROPHYSICS	6361	0746										
Chiappini, C;	revealed by													
Perez-	APOGEE and													
Villegas, A;	Gaia EDR3													
Khalatyan, A;														
Anders, F;														
Barbuy, B;														
Santiago, BX;														
Steinmetz, M;														
Cunha, K;														
Schultheis, M;														
Majewski, SR;														
Minchev, I;														
Minniti, D;														
Beaton, RL;														
Cohen, RE; da														
Costa, LN;														
Fernández-														
Trincado, JG;														
Garcia-														
Hernández,														
DA; Geisler,														
D;														
Hasselquist, S;														
Lane, RR;														
Nitschelm, C;														
Rojas-														
Arriagada. A:														
Roman-Lopes														
A: Smith, V:														
Zasowski, G														
Ramis F	Spatial Design of	IOURNAL OF	1088-	1532-	2022 25	3	224	243		http://dx.doi.org/10.1080/10888705.2020.1824787	WOS-000575797900001	Y	N	N
Mohr M	Guest Feeding	APPLIED ANIMAI	8705	7604	2022 23	5	227	245		<u>http://dx.doi.org/10.1000/10000/05.2020.1024707</u>		1	.,	11
Kohn G	Programs and	WELFARF	0,05	7004										
Gibson O	Their Effects on	SCIENCE												
Bashaw, M	Giraffe													

Matolicy, D, Maple, T Rojas- Arriagada, A; Recio-Blanco, A; Hill, V; de Laverny, P; Schultheis, M; Babusiaux, C; Zoccali, M; Minniti, D; Gonzalez, OA; Feltzing, S; Gilmore, G; Randich, S; Vallenari, A; Alfaro, EJ; Bensby, T; Bragaglia, A; Flaccomio, E; Margina, A; Flaccomio, E; Smiljanic, R; Bergemann, M; Costado, MT; Damiani, F; Hourihane, A; Jofré, P; Lardo, C; Magrini, L; Maiorca, E; Morbidelli, L; Sbordone, L; Worley, CC; Zaggia, S;	Social Interactions The Gaia-ESO Survey: metallicity and kinematic trends in the Milky Way bulge	ASTRONOMY & ASTROPHYSICS	0004- 1 6361 0	432-	2014	569			A103	http://dx.doi.org/10.1051/0004-6361/201424121	WOS:000343092100093	Ν	NA	Ν
Roque, DV; Macandza, VA; Zeller, U; Starik, N; Göttert, T	Historical and current distribution and movement patterns of large herbivores in the Limpopo National Park, Mozambique	FRONTIERS IN ECOLOGY AND EVOLUTION	2296- 701X		2022	10			978397	http://dx.doi.org/10.3389/fevo.2022.978397	WOS:000860635700001	Υ	Ν	Ν
Rose, A; Liao, SY; Bonneau, A	Regional Economic Impacts of a Verdugo Scenario Earthquake Disruption of Los	EARTHQUAKE SPECTRA	8755- 2930		2011	27 3	881	906		http://dx.doi.org/10.1193/1.3610245	WOS:000293792600012	Ν	NA	Ν

Ryde, N; Schultheis, M; Grieco, V; Matteucci, F; Rich, RM; Uttenthaler, S	Angeles Water Supplies: A Computable General Equilibrium Analysis CHEMICAL EVOLUTION OF THE INNER 2 DEGREES OF THE MILKY WAY BULGE: [?/Fe] TRENDS	ASTRONOMICAL JOURNAL	0004- 6256	1538- 3881	2016 151	1			1	http://dx.doi.org/10.3847/0004-6256/151/1/1	WOS:000368250900001	N	NA	N
Saito, M; Bercovitch, FB; Idani, G	AND METALLICITY GRADIENTS The impact of Masai giraffe nursery groups on the development of social associations	BEHAVIOURAL PROCESSES	0376- 6357	1872- 8308	2020 180				104227	http://dx.doi.org/10.1016/j.beproc.2020.104227	WOS:000581915800003	Y	Ν	N
Sathar, F; Badlangana, NL; Manger, PR	among females and young individuals Variations in the Thickness and Composition of the Skin of the Giraffe	ANATOMICAL RECORD- ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY	1932- 8486	1932- 8494	2010 293	9	1615	1627		http://dx.doi.org/10.1002/ar.21190	WOS:000281498500017	Y	N	N
Scheijen, CPJ; van der Merwe, S; Ganswindt, A; Deacon, F	Anthropogenic Influences on Distance Traveled and Vigilance Behavior and Stress-Related Endocrine	BIOLOGY ANIMALS	2076- 2615		2021 11	5			1239	http://dx.doi.org/10.3390/ani11051239	WOS:000653348900001	Y	Y	Y
Schmidt, JM; Henken, S; Dowd, SE; McLaughlin, RW	Correlates in Free- Roaming Giraffes Analysis of the Microbial Diversity in the Fecal Material of Giraffes	CURRENT MICROBIOLOGY	0343- 8651	1432- 0991	2018 75	3	323	327		http://dx.doi.org/10.1007/s00284-017-1383-y	WOS:000424877100012	Y	Ν	N
Schuette, P; Creel, S; Christianson, D	Ungulate distributions in a rangeland with competitors, predators and pastoralists	JOURNAL OF APPLIED ECOLOGY	0021- 8901	1365- 2664	2016 53	4	1066	1077		http://dx.doi.org/10.1111/1365-2664.12610	WOS:000380065600011	Y	Ν	N

Schultheis, M; Chen, BO:	Mapping the Milky Way bulge	ASTRONOMY & ASTROPHYSICS	0004- 1432- 6361 0746	2014 566				A120	http://dx.doi.org/10.1051/0004-6361/201322788	WOS:000338681500038	Ν	NA	N
Jiang, BW;	at high resolution:												
Gonzalez, OA;	the 3D dust												
Enokiya, R;	extinction, CO,												
Fukui, Y;	and X factor maps												
Torii, K; Reikuba M:													
Minniti D													
Shen, LO:	Development of	ACTA	0324-	2021 73	4	613	620			WOS:000743551200018	Ν	NA	Ν
Wang, MY;	Stereotypical	ZOOLOGICA	0770										
Zheng, QZ;	Behaviour in	BULGARICA											
Zhu, YJ; Li,	Captive Fawns of												
Y; Zhou, M;	Alpine Musk Deer												
Sheng, Y;	Moschus												
Meng XX	Hodgson 1839												
Meng, XX	(Artiodactyla:												
	Moschidae)												
Simon, JD;	STELLAR	ASTROPHYSICAL	0004- 1538-	2015 808	1			95	http://dx.doi.org/10.1088/0004-637X/808/1/95	WOS:000359062500095	Ν	NA	Ν
Drlica-	KINEMATICS	JOURNAL	637X 4357										
Wagner, A;	AND												
Li, TS; Nord,	METALLICITIES												
B; Gena, M;	IN THE ULTRA-												
Balbinot F	GALAXY												
Buckley-Geer.	RETICULUM II												
E; Lin, H;													
Marshall, J;													
Santiago, B;													
Strigari, L;													
Washeler PU													
Yanny B.													
Abbott, T:													
Bauer, AH;													
Bernstein,													
GM; Bertin, E;													
Brooks, D;													
Burke, DL;													
Rosell AC													
Kind, MC;													
D'Andrea, CB;													
da Costa, LN;													
DePoy, DL;													
Desai, S;													
Dieni, HT;													
Cunha CE:													
Estrada. J:													
Evrard, AE;													

Neto, AF;												
Fernandez, E;												
Finley, DA;												
Flaugher, D;												
Frieman, J;												
Gaztanaga, E;												
Gerdes, D;												
Gruen, D;												
Gruendl, RA;												
Honscheid, K;												
James, D;												
Kent, S;												
Kuehn, K;												
Kuropatkin,												
N; Lahav, O;												
Maia, MAG;												
March, M;												
Martini, P;												
Miller, CJ;												
Miquel, R;												
Ogando, R;												
Romer, AK;												
Roodman, A;												
Rykoff, ES;												
Sako, M;												
Sanchez, E;												
Schubnell, M;												
Sevilla, I;												
Smith, RC;												
Soares-Santos,												
M; Sobreira,												
F; Suchyta, E;												
Swanson,												
MEC; Tarle,												
G; Thaler, J;												
Tucker, D;												
Vikram, V;												
Walker, AR;												
Wester, W												
SKARPE, C	IMPACT OF	AMBIO	0044-	1991 20	8	351	356		WOS:A1991GZ89800003	Ν	NA	Ν
	GRAZING IN		7447									
	SAVANNA											
	ECOSYSTEMS											
Strauss, MKL;	Food supply and	POPULATION	1438- 1438-	2015 57	3	505	516	http://dx.doi.org/10.1007/s10144-015-0499-9	WOS:000360084700006	Y	Ν	N
Kilewo, M;	poaching limit	ECOLOGY	3896 390X									
Rentsch, D;	giraffe abundance											
Packer, C	in the Serengeti											
Strauss, MKL;	Using claw marks	JOURNAL OF	0952-	2013 289	2	134	142	http://dx.doi.org/10.1111/j.1469-7998.2012.00972.x	WOS:000313833200008	Y	Ν	Ν
Packer, C	to study lion	ZOOLOGY	8369									
	predation on											
	giraffes of the											
	Serengeti											

Strauss, MKL;	Giraffe mothers in	AFRICAN	0141-		2013 51	3	506	509	http://dx.doi.org/10.1111/aje.12040	WOS:000321759300015	Y	Ν	Ν
Muller, Z	East Africa linger for days near the	JOURNAL OF ECOLOGY	6707										
	remains of their												
Strauss, S;	Modifications in	JOURNAL OF PAIN	1526-	1528-	2021 22	6	680	691	http://dx.doi.org/10.1016/j.jpain.2020.12.003	WOS:000659279900004	Ν	NA	Ν
Barby, S; Hartner, J:	fMRI Representation of		5900	8447									
Neumann, N;	Mental Rotation												
Moseley, GL; Lotze, M	Following a 6 Week Graded												
,	Motor Imagery												
	Training in Chronic CRPS												
	Patients												
Sumiyoshi, C; Fujino H.	Semantic Memor	y FRONTIERS IN PSYCHIATRY	166 064	4- 201 0	89			87	7 <u>http://dx.doi.org/10.3389/fpsyt.2018.00087</u> WOS:000	427948800001 N		NA	Ν
Sumiyoshi, T;	Japanese Patients	3	001	0									
Yasuda, Y; Yamamori H:	With Schizophrei Examined With	nia											
Fujimoto, M;	Category Fluency	y											
Hashimoto, R Trinkel M:	Spotted hypenes	IOURNAL OF	0052	1460	2004 26	1 2	125	133	http://dx.doi.org/10.1017/\$0052836004005588	WOS-000224718300003	N	NΛ	N
Fleischmann,	(Crocuta crocuta)	ZOOLOGY	8369	7998	2004 20	H 2	125	155	<u>nup.//ux.u0i.org/10.101//30752650904005588</u>	WOS.000224718500005	1	INA	19
PH; Steindorfer	follow migratory												
AF;	expansion of a												
Kastberger, G	clan territory in												
Tucker, MA;	Moving in the	SCIENCE	0036-	1095-	2018 35	637	4 466	469	http://dx.doi.org/10.1126/science.aam9712	WOS:000423283200049	Y	Ν	Ν
Böhning- Gaese K:	Anthropocene:		8075	9203									
Fagan, WF;	in terrestrial												
Fryxell, JM;	mammalian												
B; Alberts,	movements												
SC; Ali, AH;													
Attias, N;													
Avgar, T;													
Brooks, H;													
Bayarbaatar,													
Bertassoni, A;													
Beyer, D;													
Bidner, L; van Beest, FM;													
Blake, S;													
Blaum, N; Bracis, C;													
Brown, D; de													

Bruyn PIN-	
Cannaci F:	
Calabras IM	
Camilo Sc, JW,	
C; Chaname-	
Jammes, S;	
Chiaradia, A;	
Davidson, SC;	
Dennis, T;	
DeStefano, S;	
Diefenbach,	
D; Douglas-	
Hamilton, I;	
Fennessy, J;	
Fichtel, C;	
Fiedler, W;	
Fischer, C;	
Fischhoff, I:	
Fleming CH:	
Ford AT	
Fritz SA:	
Gebr R'	
Gobeen IR	
Guraria E-	
Unlable, E,	
Ne House white,	
Mi Heurican	
M; Hewison,	
AJM; HOI, C;	
Hurme, E;	
Isbell, LA;	
Janssen, R;	
Jeltsch, F;	
Kaczensky, P;	
Kane, A;	
Kappeler, PM;	
Kauffman, M;	
Kays, R;	
Kimuyu, D;	
Koch, F;	
Kranstauber,	
B; LaPoint, S;	
Leingruber,	
P; Linnell,	
JDC; López-	
López, P;	
Markham,	
AC;	
Mattisson, J:	
Medici. EP:	
Mellone II	
Merrill F:	
Moura, 2, Moura, GD:	
Mourao, OD,	

Morato PG:											
Morallat N											
Morenet, N,											
Morrison, IA;											
Diaz-Muñoz,											
SL; Mysterud,											
A;											
Nandintsetseg.											
D. Nathan R.											
Niomir A:											
Nialilli, A,											
Odden, J;											
O'Hara, RB;											
Oliveira-											
Santos, LGR;											
Olson KA:											
Patterson BD:											
da Daula, DC,											
de Paula, KC;											
Pedrotti, L;											
Reineking, B;											
Rimmler, M;											
Rogers, TL;											
Rolandsen											
CM											
Doconhours											
Rosenberry,											
CS;											
Rubenstein,											
DI; Safi, K;											
Saïd, S: Sapir,											
N: Sawyer H:											
Sohmidt NM:											
Schindt, INNI,											
Selva, N;											
Sergiel, A;											
Shiilegdamba,											
E; Silva, JP;											
Singh, N:											
Solberg El											
Solderg, LJ,											
Spiegel, O;											
Strand, O;											
Sundaresan, S;											
Ullmann, W;											
Voigt, U;											
Wall, J:											
Wattles D.											
Wilcololi M.											
WIKEISKI, IVI;											
wilmers, CC;											
Wilson, JW;											
Wittemyer, G;											
Zieba, F:											
Zwijacz-											
Kozica T.											
Mueller T											
widelier, 1	D1 1	CORNER	0006 1005	2022 200	6640 1050	1064		WOR 001050 (COR00005		X 7	
Tucker, MA;	Behavioral	SCIENCE	0036- 1095-	2023 380	6649 1059	1064		w08:001059663700007	Y	Y	Y
Schipper, AM;	responses of		8075 9203								

Adams, TSF;	terrestrial
Attias, N;	mammals to
Avgar, T:	COVID-19
Babic NL:	lockdowns
Barker KI	
Darker, RS,	
Dasune-	
Rousseau, G;	
Benr, DM;	
Belant, JL;	
Beyer, DE ;	
Blaum, N;	
Blount, JD;	
Bockmühl, D;	
Boulhosa.	
RLP: Brown.	
MB	
Buuveihaatar	
B: Camacci	
E. Calabrasa	
IN. Come D.	
Chamaillí	
Chamaine-	
Jammes, S;	
Chan, AN;	
Chase, MJ;	
Chaval, Y;	
Chenaux-	
Ibrahim, Y;	
Cherry, SG;	
Cirovic, D;	
Coban, E;	
Cole, EK;	
Conlee, L:	
Courtemanch	
A: Cozzi G:	
Davidson SC.	
DeBloois D:	
Debiolis, D,	
Della, N,	
Denicola, V;	
Desdiez, ALJ;	
Douglas-	
Hamilton, I;	
Drake, D;	
Egan, M;	
Eikelboom,	
JAJ; Fagan,	
WF; Farmer,	
MJ; Fennessy,	
J; Finnegan,	
SP; Fleming,	
CH; Fournier.	
B; Fowler,	
NL;	
CH; Fournier, B; Fowler, NL;	

Gantchoff,		
MG; Garnier,		
A: Gehr. B:		
Geremia C:		
Cohoon IP:		
Goneen, JK,		
Hauptfleisch,		
ML;		
Hebblewhite,		
M: Heim, M:		
Hertel AG		
Henrich M.		
Hewison,		
AJM; Hodson,		
J; Hoffman, N;		
Hopcraft,		
JGC: Huber		
D: Isaac FI:		
Louile V.		
Jaliik, K,		
Jezek, M;		
Johansson, O;		
Jordan, NR;		
Kaczensky, P;		
Kamaru DN		
Kauffman		
Kauffilian,		
MJ; Kautz,		
IM; Kays, R;		
Kelly, AP;		
Kindberg, J;		
Krofel, M;		
Kusak, J;		
Lamb, CT:		
LaSharr TN		
Laimanher		
D. Laitnan II.		
P; Lettier, n;		
Lierz, M;		
Linnell, JDC;		
Lkhagvaja, P;		
Long, RA;		
López-Bao,		
JV: Loretto.		
MC [.]		
Marchand D		
Martin U		
Martinez, LA;		
McBride, RT;		
McLaren,		
AAD;		
Meisingset, E;		
Melzheimer, J:		
Merrill FH:		
Middleton		
AD; Monteith,		

KL; Moore,	
SA; Van	
Moorter, B;	
Morellet, N;	
Morrison, T;	
Müller, R;	
Mysterud, A;	
Noonan, MJ;	
O'Connor, D;	
Olson, D;	
Olson, KA;	
Ortega, AC;	
Ossi, F;	
Panzacchi, M;	
Patchett, R;	
Patterson, BR;	
de Paula, RC;	
Payne, J;	
Peters, W;	
Petroelje, TR;	
Pitcher, BJ;	
Pokorny, B;	
Poole, K;	
Potocnik, H;	
Poulin, MP;	
Pringle, RM;	
Prins, HHT;	
Ranc, N;	
Reljic, S;	
Robb, B;	
Roder, K;	
Rolandsen,	
CM; Kutz, C;	
A.D. Samulia	
AK; Samenus,	
Crowford H	
Clawfold, H,	
Schooler, S, Sekerciogh	
CH: Salva N.	
Semenzato P	
Sergiel A:	
Sharma K	
Shawler AL:	
Signer J	
Silovsky V	
Silva JP:	
Simon, R:	
Smiley, RA;	
Smith, D;	
Solberg, EJ;	
Ellis-Soto, D;	

Spiegel, O;														
Stabach, J;														
I Stabler DR														
Stephenson, J:														
Stewart, C;														
Strand, O;														
Sunde, P;														
Svoboda, NJ;														
Swart, J;														
Thompson, JJ;														
Toal, KL;														
Uiseb, K;														
MC: Valilla														
M. Verzuh														
TL: Wachter.														
B; Wagler,														
BL;														
Whittington, J	;													
Wikelski, M;														
Wilmers, CC;														
Wittemyer, G;														
Young, JK; Ziaha E:														
Zieba, F, Zwijacz-														
Kozica, T:														
Huijbregts,														
MAJ; Mueller,														
Т														
van der Walt,	A Preliminary	ANIMALS	2076-		2022 12	23			3348	http://dx.doi.org/10.3390/ani12233348	WOS:000895379300001	Y	Ν	Ν
MS; Daffue,	Study on the		2615											
W; Goedhals,	Siphon Mashaniam in													
J, van der Merwe S:	Giraffa (Giraffa													
Deacon F	camelonardalis)													
VanderWaal	Linking social and	JOURNAL OF	0021-	1365-	2014 83	2	406	414		http://dx.doi.org/10.1111/1365-2656.12137	WOS:000331469200010	Y	Ν	Ν
KL; Atwill,	pathogen	ANIMAL	8790	2656		_						-		
ER; Isbell,	transmission	ECOLOGY												
LA;	networks using													
McCowan, B	microbial genetics													
	in giraffe (Giraffa													
	camelopardalis)	DEVICEDAT	1015								W10.0 000000000000000	••		
VanderWaal,	Multilevel social	BEHAVIORAL	1045-	1465-	2014 25	I	17	26		http://dx.doi.org/10.1093/beheco/art061	WOS:000328380000005	Y	Ν	Ν
KL; wang, H;	organization and	ECOLOGY	2249	1219										
Fushing H	space use in reticulated giraffe													
Isbell, LA	(Giraffa													
	camelopardalis)													
vanVuuren,	Ungulate	PLOS ONE	1932-		2023 18	7			e0288975	http://dx.doi.org/10.1371/journal.pone.0288975	WOS:001038263300037	Ν	NA	Ν
M;	responses and		6203											
vanVuuren, R;	habituation to													

Silverberg, LM; Manning, J; Pacifici, K; Dorgeloh, W; Campbell, J Warshaw, DM; Guilford, WH; Freyzon,	unmanned aerial vehicles in Africa's savanna The light chain binding domain of expressed smooth	JOURNAL OF BIOLOGICAL CHEMISTRY	0021- 9258		2000 275	47	37167	37172		http://dx.doi.org/10.1074/jbc.M006438200	WOS:000165577700097	N	NA	N
Y; Krementsova, E; Palmiter, KA; Tyska, MJ; Baker, JE; Trybus, KM	muscle heavy meromyosin acts as a mechanical lever													
Yamashita, T; Gaynor, KM; Kioko, J; Brashares, J; Kiffner, C	Antipredator behaviour of African ungulates around human settlements	AFRICAN JOURNAL OF ECOLOGY	0141- 6707	1365- 2028	2018 56	3	528	536		http://dx.doi.org/10.1111/aje.12489	WOS:000440898700012	Y	Ν	N
Zoccali, M; Valenti, E; Gonzalez, OA	Weighing the two stellar components of the Galactic bulge	ASTRONOMY & ASTROPHYSICS	0004- 6361	1432- 0746	2018 618				A147	http://dx.doi.org/10.1051/0004-6361/201833147	WOS:000448103200001	Ν	NA	Ν
Zoccali, M; Vasquez, S; Gonzalez, OA; Valenti, E; Rojas- Arriagada, A; Minniti, J; Rejkuba, M; Minniti, D; McWilliam, A; Babusiaux, C; Hill, V; Renzini, A	The GIRAFFE Inner Bulge Survey (GIBS) III. Metallicity distributions and kinematics of 26 Galactic bulge fields	ASTRONOMY & ASTROPHYSICS	0004-6361	1432- 0746	2017 599				A12	http://dx.doi.org/10.1051/0004-6361/201629805	WOS:000395821900104	N	NA	N

Species	Country	Site	Authorising institutions, permits, and protocols
Giraffa camelopardalis antiquorum	COD	Garamba National Park	African Parks partnership with Government of DRC
Giraffa camelopardalis antiquorum	CPD	Garamba National Park	African Parks partnership with Government of DRC
Giraffa camelopardalis antiquorum	TCD	Zakouma National Park	African Parks partnership with Government of Chad
Giraffa camelopardalis antiquorum	TCD	Zakouma National Park	African Parks partnership with Government of Chad
Giraffa camelopardalis camelopardalis	ETH	Garamba National Park	FP26133952
Giraffa camelopardalis camelopardalis	UGA	Kidepo Valley National Park	MoU between Uganda Wildlife Authority and GCF; UWA/TBDP/RES/50
Giraffa camelopardalis camelopardalis	UGA	Murchison Falls National Park	MoU between Uganda Wildlife Authority and GCF; UWA/TBDP/RES/50
Giraffa camelopardalis camelopardalis	UGA	Murchison Falls National Park	MoU between Uganda Wildlife Authority and GCF; UWA/TBDP/RES/50
Giraffa camelopardalis camelopardalis	UGA	Murchison Falls National Park	MoU between Uganda Wildlife Authority and GCF; UWA/TBDP/RES/50
Giraffa camelopardalis camelopardalis	UGA	Murchison Falls National Park, South	MoU between Uganda Wildlife Authority and GCF; UWA/TBDP/RES/50
Giraffa camelopardalis camelopardalis	UGA	Murchison Falls National Park, South	MoU between Uganda Wildlife Authority and GCF; UWA/TBDP/RES/50
Giraffa camelopardalis camelopardalis	UGA	Pian Upe Wildife Reserve	MoU between Uganda Wildlife Authority and GCF; UWA/TBDP/RES/50
Giraffa camelopardalis camelopardalis	UGA	Pian Upe Wildife Reserve	MoU between Uganda Wildlife Authority and GCF; UWA/TBDP/RES/50
Giraffa camelopardalis camelopardalis	UGA	Pian Upe Wildife Reserve	MoU between Uganda Wildlife Authority and GCF; UWA/TBDP/RES/50
Giraffa camelopardalis giraffa	ZWE	Save Valley Conservancy	Permit No. 23(1) (C) (II) 35/2019
Giraffa camelopardalis peralta	NER	Giraffe Zone	Government of Niger approval

Table S2. List of permit numbers and agreements for Giraffe Conservation Foundation giraffe GPS tracking across Africa.

Giraffa camelopardalis peralta	NER	Giraffe Zone	Government of Niger approval
Giraffa camelopardalis reticulata	KEN	Northern Kenya (region)	Permit no. KWS/BRM/5001
Giraffa giraffa angolensis	NAM	Damaraland	2018011402/AN2028011402/RVIV00042018-22
Giraffa giraffa angolensis	NAM	Damaraland	2018011402/AN2028011402/RVIV00042018-22
Giraffa giraffa angolensis	NAM	EtoshaHeights Private Game Reserve	2018011402/AN2028011402/RVIV00042018-22
Giraffa giraffa angolensis	NAM	Etosha National Park	2018011402/AN2028011402/RVIV00042018-22
Giraffa giraffa angolensis	NAM	Etosha National Park	2018011402/AN2028011402/RVIV00042018-22
Giraffa giraffa angolensis	NAM	Huab (region)	
Giraffa giraffa angolensis	NAM	Northwest Namibia (region)	2018011402/AN2028011402/RVIV00042018-22
Giraffa giraffa angolensis	NAM	Northwest Namibia (region)	2018011402/AN2028011402/RVIV00042018-22
Giraffa giraffa angolensis	NAM	Northwest Namibia (region)	2018011402/AN2028011402/RVIV00042018-22
Giraffa giraffa angolensis	NAM	Northwest Namibia (region)	2018011402/AN2028011402/RVIV00042018-22
Giraffa giraffa angolensis	NAM	Okapuka Game Reserve	MoU between Uganda Wildlife Authority and GCF; UWA/TBDP/RES/50
Giraffa giraffa angolensis	NAM	Pro Namib Nature Reserve	2018011402/AN2028011402/RVIV00042018-22
Giraffa giraffa giraffa	BWA	Abu Concession	Botswana Government - Research Permit number: EWT 8/36/4 XVII (57)
Giraffa giraffa giraffa	BWA	Chobe National Park	Botswana Government - Research Permit number: EWT 8/36/4 XVII (57)
Giraffa giraffa giraffa	MOZ	Karingani Game Reserve	African Parks partnership with Government of Mozambique
Giraffa giraffa giraffa	MWI	Majete WR	African Parks partnership with Government of Malawi

Giraffa giraffa giraffa	UGA	Kidepo Valley National Park	MoU between Uganda Wildlife Authority and GCF; UWA/TBDP/RES/50
Giraffa giraffa giraffa	UGA	Kidepo Valley National Park	MoU between Uganda Wildlife Authority and GCF; UWA/TBDP/RES/50
Giraffa giraffa giraffa	UGA	Kidepo Valley National Park	MoU between Uganda Wildlife Authority and GCF; UWA/TBDP/RES/50
Giraffa giraffa giraffa	ZAF	Kruger National Park	Permit number: 09787
Giraffa giraffa giraffa	ZAF	Makalali Game Reserve	Permit number: 09787
Giraffa giraffa giraffa	ZAF	Phinda Private Game Reserve	Permit number: 09787
Giraffa giraffa giraffa	ZAF	Selati Game Reserve	Permit number: 09787
Giraffa giraffa giraffa	ZWE	Bubye Valley Conservancy	Permit No. 23(1) (C) (II) 35/2019
Giraffa tippelskirchi	KEN	Amboseli (region)	Permit no. KWS/BRM/5001
Giraffa tippelskirchi	TZA	Serengeti National Park	COSTECH: 2020-313-NA-2019-084
			TANAPA: BE.161/376/01
			NCAA: BD.158/711/01/76
Giraffa tippelskirchi	TZA	Tarangire National Park	COSTECH: 2020-313-NA-2019-084
			TANAPA: BE.161/376/01
			NCAA: BD.158/711/01/76

Year Unit type	Country	Region	Fix schedule (per day)	Fixes per day (mean)	Fixes per day (std err)	Fix success rate	Deployment expected (days)	Deployment length (days)	Deployment success rate	Unit status
2011 Head harness 1.2	NAM	Hoanib	24	23.67	0.25	0.99	730	86	0.12	inactive
2011 Head harness 1.2	NAM	Hoanib	24	7.72	0.43	0.32	730	378	0.52	inactive
2011 Head harness 1.2	NAM	Zambezi	6	11.62	0.55	1.94	730	357	0.49	inactive
2011 Head harness 1.2	NAM	Zambezi	6	1.00	0.00	0.17	730	112	0.15	inactive
2012 Head harness 1.2	BWA	Abu	6	5.94	0.03	0.99	730	249	0.34	inactive
2012 Head harness 1.2	BWA	Chobe	6	5.59	0.07	0.93	730	122	0.17	inactive
2012 Head harness 1.2	BWA	Chobe	6	2.89	0.10	0.48	730	232	0.32	inactive
2012 Head harness 1.2	BWA	Chobe	6	5.29	0.09	0.88	730	123	0.17	inactive
2012 Head harness 1.2	NAM	Hoanib	24	4.75	0.39	0.20	730	180	0.25	inactive
2012 Head harness 1.2	NAM	Hoanib	24	4.66	0.30	0.19	730	131	0.18	inactive
2015 Head harness 1.2	ETH	Gambella	3	2.91	0.02	0.97	730	333	0.46	inactive
2015 Head harness 1.2	ETH	Gambella	3	2.66	0.03	0.89	730	318	0.44	inactive
2015 Head harness 1.2	ETH	Gambella	3	2.75	0.02	0.92	730	489	0.67	inactive
2016 Head harness 1.2	COD	Garamba	3	5.35	0.97	1.78	730	155	0.21	inactive
2016 Head harness 1.2	COD	Garamba	3	2.55	0.05	0.85	730	258	0.35	inactive
2016 Head harness 1.2	COD	Garamba	3	2.95	0.03	0.98	730	111	0.15	inactive
2016 Head harness 1.2	COD	Garamba	3	2.97	0.01	0.99	730	278	0.38	inactive
2016 Head harness 1.2	COD	Garamba	3	2.89	0.03	0.96	730	132	0.18	inactive
2016 Head harness 1.2	COD	Garamba	3	3.16	0.19	1.05	730	48	0.07	inactive

Table S3. Performance details of each Giraffe Conservation Foundation tracking unit deployed across Africa. (Unit status as of 14 December 2023)

2016 Head harness 1.2	COD	Garamba	3	2.92	0.04	0.97	730	48	0.07	inactive
2016 Head harness 1.2	COD	Garamba	3	2.99	0.01	1.00	730	392	0.54	inactive
2016 Head harness 1.2	NAM	Hoanib	24	8.67	0.30	0.36	730	135	0.18	inactive
2016 Head harness 1.2	NAM	Hoanib	24	6.95	0.14	0.29	730	313	0.43	inactive
2016 Head harness 1.2	NAM	Hoanib	24	6.79	0.14	0.28	730	304	0.42	inactive
2016 Head harness 1.2	NAM	Hoanib	24	5.35	0.06	0.22	730	384	0.53	inactive
2016 Head harness 1.2	NAM	Hoanib	24	4.28	0.13	0.18	730	122	0.17	inactive
2016 Head harness 1.2	UGA	MurchisonFalls	24	16.60	2.69	0.69	730	67	0.09	inactive
2016 Head harness 1.2	UGA	MurchisonFalls	24	23.75	2.52	0.99	730	76	0.10	inactive
2016 Head harness 1.2	UGA	MurchisonFalls	24	25.64	2.52	1.07	730	82	0.11	inactive
2016 Head harness 1.2	UGA	MurchisonFalls	24	25.74	1.76	1.07	730	153	0.21	inactive
2016 Head harness 1.2	UGA	MurchisonFalls	24	27.61	2.08	1.15	730	110	0.15	inactive
2016 Head harness 1.2	ZWE	Bubye	3	5.55	0.53	1.85	730	243	0.33	inactive
2016 Head harness 1.2	ZWE	Bubye	3	4.75	0.06	1.58	730	62	0.08	inactive
2017 Ossi unit 1.0	KEN	Leparua	24	23.86	0.04	0.99	730	647	0.89	inactive
2017 Ossi unit 1.0	KEN	Leparua	24	23.82	0.05	0.99	730	424	0.58	inactive
2017 Ossi unit 1.0	KEN	Leparua	24	23.11	0.10	0.96	730	984	1.35	inactive
2017 Ossi unit 1.0	KEN	Leparua	24	23.78	0.10	0.99	730	220	0.30	inactive
2017 Ossi unit 1.0	KEN	Loisaba	24	23.84	0.11	0.99	730	50	0.07	inactive
2017 Ossi unit 1.0	KEN	Loisaba	24	22.71	0.16	0.95	730	874	1.20	inactive
2017 Ossi unit 1.0	KEN	Loisaba	24	22.29	1.56	0.93	730	13	0.02	inactive
2017 Ossi unit 1.0	KEN	Loisaba	24	23.76	0.22	0.99	730	106	0.15	inactive
2017 Ossi unit 1.0	KEN	Loisaba	24	23.86	0.10	0.99	730	208	0.28	inactive

2017 Ossi unit 1.0	KEN	Loisaba	24	23.84	0.12	0.99	730	49	0.07	inactive
2017 Ossi unit 1.0	KEN	Loisaba	24	23.78	0.19	0.99	730	112	0.15	inactive
2017 Ossi unit 1.0	NAM	Hoanib	24	22.43	0.13	0.93	730	1455	1.99	inactive
2017 Ossi unit 1.0	NAM	Hoanib	24	22.17	0.50	0.92	730	131	0.18	inactive
2017 Ossi unit 1.0	NAM	Hoanib	24	23.55	0.06	0.98	730	1853	2.54	inactive
2017 Ossi unit 1.0	NAM	Hoanib	24	23.85	0.06	0.99	730	145	0.20	inactive
2017 Ossi unit 1.0	NAM	Hoanib	24	23.86	0.11	0.99	730	202	0.28	inactive
2017 Ossi unit 1.0	NAM	Hoanib	24	23.90	0.19	1.00	730	88	0.12	inactive
2017 Ossi unit 1.0	NAM	Hoanib	24	22.91	0.10	0.95	730	1940	2.66	inactive
2017 Ossi unit 1.0	NAM	Hoanib	24	23.33	0.05	0.97	730	2202	3.02	inactive
2017 Ossi unit 1.0	NAM	Hoanib	24	23.91	0.05	1.00	730	1064	1.46	inactive
2017 Ossi unit 1.0	NAM	Okapuka	144	140.63	0.57	0.98	730	1008	1.38	inactive
2017 Ossi unit 1.0	NAM	Okapuka	48	46.61	0.43	0.97	730	184	0.25	inactive
2017 Ossi unit 1.0	UGA	Kidepo	24	45.74	1.08	1.91	730	38	0.05	inactive
2017 Ossi unit 1.0	UGA	MurchisonFalls	24	20.29	3.50	0.85	730	6	0.01	inactive
2017 Ossi unit 1.0	UGA	MurchisonFalls	24	23.70	0.19	0.99	730	212	0.29	inactive
2017 Ossi unit 1.0	UGA	MurchisonFalls	24	22.62	0.52	0.94	730	71	0.10	inactive
2017 Ossi unit 1.0	UGA	MurchisonFalls	24	23.87	0.09	0.99	730	269	0.37	inactive
2017 Ossi unit 1.0	UGA	MurchisonFalls	24	23.79	0.04	0.99	730	266	0.36	inactive
2018 Ossi unit 1.0	NAM	Hoanib	24	23.86	0.04	0.99	730	1089	1.49	inactive
2018 Ossi unit 1.0	NAM	Hoanib	24	23.69	0.03	0.99	730	1060	1.45	inactive
2018 Ossi unit 1.0	NAM	Hoanib	24	23.25	0.04	0.97	730	1091	1.49	inactive
2018 Ossi unit 1.0	NAM	Hoanib	24	23.88	0.09	0.99	730	247	0.34	inactive

2018 Ossi unit 1.0	NAM	Hoanib	24	23.92	0.01	1.00	730	1838	2.52	inactive
2018 Ossi unit 1.0	NAM	Hoanib	24	23.89	0.02	1.00	730	671	0.92	inactive
2018 Ossi unit 1.0	NAM	Hoanib	24	23.94	0.03	1.00	730	892	1.22	inactive
2018 Ossi unit 1.0	NAM	Hoanib	24	23.81	0.02	0.99	730	1460	2.00	inactive
2018 Ossi unit 1.0	NAM	Hoanib	24	23.93	0.02	1.00	730	1223	1.68	inactive
2018 Ossi unit 1.0	NAM	Hoanib	24	23.90	0.01	1.00	730	1971	2.70	active
2018 Ossi unit 1.0	NER	GiraffeZone	24	17.07	0.37	0.71	730	551	0.75	inactive
2018 Ossi unit 1.0	NER	GiraffeZone	24	14.39	0.25	0.60	730	1369	1.88	inactive
2018 Ossi unit 1.0	NER	GiraffeZone	24	23.63	0.19	0.98	730	135	0.18	inactive
2018 Ossi unit 1.0	UGA	Kidepo	24	23.89	0.06	1.00	730	347	0.48	inactive
2018 Ossi unit 1.0	UGA	Kidepo	24	23.49	0.30	0.98	730	88	0.12	inactive
2018 Ossi unit 1.0	UGA	Kidepo	24	23.82	0.07	0.99	730	487	0.67	inactive
2018 Ossi unit 1.0	UGA	Kidepo	24	23.24	0.09	0.97	730	1553	2.13	inactive
2018 Ossi unit 1.0	UGA	Kidepo	24	23.00	0.79	0.96	730	21	0.03	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	22.91	0.35	0.95	730	134	0.18	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	18.19	0.43	0.76	730	374	0.51	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	20.37	0.36	0.85	730	438	0.60	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	22.39	0.31	0.93	730	194	0.27	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	19.77	0.57	0.82	730	112	0.15	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	20.83	1.94	0.87	730	11	0.02	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	22.97	0.16	0.96	730	439	0.60	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	23.65	0.25	0.99	730	22	0.03	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	14.00	3.36	0.58	730	7	0.01	inactive

2018 Ossi unit 1.0	UGA	MurchisonFalls	24	23.58	0.28	0.98	730	47	0.06	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	23.12	0.20	0.96	730	342	0.47	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	21.45	0.44	0.89	730	176	0.24	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	22.90	0.25	0.95	730	232	0.32	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	23.66	0.27	0.99	730	86	0.12	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	23.38	0.31	0.97	730	93	0.13	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	23.47	0.13	0.98	730	439	0.60	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	23.29	0.13	0.97	730	537	0.74	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	23.67	0.11	0.99	730	401	0.55	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	19.57	0.43	0.82	730	321	0.44	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	8.25	0.72	0.34	730	145	0.20	inactive
2018 Ossi unit 1.0	UGA	MurchisonFalls	24	23.82	0.07	0.99	730	342	0.47	inactive
2019 Ossi unit 1.0	KEN	BiliqoBulesa	24	23.19	0.15	0.97	730	443	0.61	inactive
2019 Ossi unit 1.0	KEN	Loisaba	24	22.19	0.29	0.92	730	114	0.16	inactive
2019 Ossi unit 1.0	KEN	Loisaba	24	23.75	0.05	0.99	730	463	0.63	inactive
2019 Ossi unit 1.0	KEN	Loisaba	24	23.01	0.17	0.96	730	146	0.20	inactive
2019 Ossi unit 1.0	KEN	Loisaba	24	22.86	0.08	0.95	730	43	0.06	inactive
2019 Ossi unit 1.0	KEN	Loisaba	24	23.45	0.12	0.98	730	200	0.27	inactive
2019 Ossi unit 1.0	KEN	Melako	24	22.55	0.41	0.94	730	54	0.07	inactive
2019 Ossi unit 1.0	KEN	Melako	24	21.39	0.35	0.89	730	263	0.36	inactive
2019 Ossi unit 1.0	KEN	Melako	24	23.54	0.09	0.98	730	387	0.53	inactive
2019 Ossi unit 1.0	KEN	Melako	24	23.29	0.13	0.97	730	282	0.39	inactive
2019 Ossi unit 1.0	KEN	Melako	24	23.88	0.11	0.99	730	185	0.25	inactive

2019 Ossi unit 1.0	KEN	Melako	24	23.70	0.04	0.99	730	318	0.44	inactive
2019 Ossi unit 1.0	KEN	Melako	24	23.67	0.08	0.99	730	304	0.42	inactive
2019 Ossi unit 1.0	KEN	Mpala	24	23.19	0.18	0.97	730	133	0.18	inactive
2019 Ossi unit 1.0	KEN	Mpala	24	23.16	0.18	0.96	730	132	0.18	inactive
2019 Ossi unit 1.0	KEN	Samburu	24	23.55	0.10	0.98	730	289	0.40	inactive
2019 Ossi unit 1.0	KEN	Samburu	24	21.79	1.08	0.91	730	18	0.02	inactive
2019 Ossi unit 1.0	KEN	Samburu	24	22.91	0.21	0.95	730	129	0.18	inactive
2019 Ossi unit 1.0	KEN	Sera	24	17.87	0.48	0.74	730	173	0.24	inactive
2019 Ossi unit 1.0	KEN	Sera	24	23.50	0.11	0.98	730	361	0.49	inactive
2019 Ossi unit 1.0	KEN	Sera	24	23.74	0.06	0.99	730	393	0.54	inactive
2019 Ossi unit 1.0	KEN	Sera	24	22.44	0.40	0.94	730	8	0.01	inactive
2019 Ossi unit 1.0	KEN	Sera	24	23.19	0.18	0.97	730	214	0.29	inactive
2019 Ossi unit 1.0	KEN	Sera	24	13.78	1.57	0.57	730	30	0.04	inactive
2019 Ossi unit 1.0	KEN	Sera	24	22.35	0.50	0.93	730	39	0.05	inactive
2019 Ossi unit 1.0	KEN	Sera	24	23.33	0.12	0.97	730	294	0.40	inactive
2019 Ossi unit 1.0	KEN	Shaba	24	23.64	0.05	0.99	730	268	0.37	inactive
2019 Ossi unit 1.0	KEN	WestGate	24	22.62	0.32	0.94	730	68	0.09	inactive
2019 Ossi unit 1.0	NAM	EtoshaHeights	24	22.47	0.15	0.94	730	848	1.16	inactive
2019 Ossi unit 1.0	NAM	EtoshaHeights	24	23.64	0.06	0.98	730	1063	1.46	inactive
2019 Ossi unit 1.0	NAM	EtoshaHeights	24	23.02	0.17	0.96	730	452	0.62	inactive
2019 Ossi unit 1.0	NAM	EtoshaHeights	24	19.17	3.58	0.80	730	5	0.01	inactive
2019 Ossi unit 1.0	NAM	EtoshaHeights	24	21.70	0.34	0.90	730	172	0.24	inactive
2019 Ossi unit 1.0	NAM	Hoanib	24	23.72	0.06	0.99	730	1338	1.83	inactive

2019 Ossi unit 1.0	NAM	Hoanib	24	23.45	0.10	0.98	730	716	0.98	inactive
2019 Ossi unit 1.0	NAM	Hoanib	24	22.76	0.07	0.95	730	952	1.30	inactive
2019 Ossi unit 1.0	NAM	Hoanib	24	22.90	0.03	0.95	730	643	0.88	inactive
2019 Ossi unit 1.0	NAM	Hoanib	24	22.93	0.06	0.96	730	164	0.22	inactive
2019 Ossi unit 1.0	NAM	Hoanib	24	23.94	0.03	1.00	730	896	1.23	inactive
2019 Ossi unit 1.0	NAM	Hoanib	24	23.89	0.03	1.00	730	688	0.94	inactive
2019 Ossi unit 1.0	NAM	Hoanib	24	23.84	0.06	0.99	730	193	0.26	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	22.98	0.09	0.96	730	460	0.63	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	22.88	0.18	0.95	730	266	0.36	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	22.78	0.10	0.95	730	385	0.53	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	13.40	0.49	0.56	730	190	0.26	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	22.72	0.12	0.95	730	319	0.44	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	22.19	0.72	0.92	730	30	0.04	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	22.49	0.45	0.94	730	40	0.05	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	26.18	1.09	1.09	730	359	0.49	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	23.43	0.09	0.98	730	249	0.34	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	46.01	2.65	1.92	730	311	0.43	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	23.51	0.09	0.98	730	264	0.36	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	22.75	0.20	0.95	730	51	0.07	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	23.80	0.12	0.99	730	217	0.30	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	23.63	0.04	0.98	730	337	0.46	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	23.67	0.04	0.99	730	375	0.51	inactive
2019 Ossi unit 1.0	NER	GiraffeZone	24	23.30	0.07	0.97	730	174	0.24	inactive

2019 Ossi unit 1.0	TCD	Zakouma	24	18.59	0.38	0.77	730	423	0.58	inactive
2019 Ossi unit 1.0	TCD	Zakouma	24	21.29	0.44	0.89	730	231	0.32	inactive
2019 Ossi unit 1.0	TCD	Zakouma	24	22.39	0.25	0.93	730	429	0.59	inactive
2019 Ossi unit 1.0	TCD	Zakouma	24	22.29	0.27	0.93	730	359	0.49	inactive
2019 Ossi unit 1.0	TCD	Zakouma	24	20.09	0.46	0.84	730	275	0.38	inactive
2019 Ossi unit 1.0	TCD	Zakouma	24	16.44	0.49	0.68	730	310	0.42	inactive
2019 Ossi unit 1.0	TCD	Zakouma	24	23.59	0.17	0.98	730	172	0.24	inactive
2019 Ossi unit 1.0	TCD	Zakouma	24	19.20	0.36	0.80	730	480	0.66	inactive
2019 Ossi unit 1.0	UGA	Kidepo	24	22.82	0.16	0.95	730	590	0.81	inactive
2019 Ossi unit 1.0	UGA	Kidepo	24	23.74	0.17	0.99	730	139	0.19	inactive
2019 Ossi unit 1.0	UGA	Kidepo	24	21.45	0.15	0.89	730	1568	2.15	inactive
2019 Ossi unit 1.0	UGA	Kidepo	24	23.97	0.02	1.00	730	395	0.54	inactive
2019 Ossi unit 1.0	UGA	MurchisonFalls	24	23.79	0.11	0.99	730	294	0.40	inactive
2019 Ossi unit 1.0	UGA	MurchisonFalls	24	23.85	0.10	0.99	730	176	0.24	inactive
2019 Ossi unit 1.0	UGA	MurchisonFalls	24	23.92	0.05	1.00	730	621	0.85	inactive
2019 Ossi unit 1.0	UGA	MurchisonFalls	24	23.96	0.02	1.00	730	945	1.29	inactive
2019 Ossi unit 1.0	UGA	MurchisonFalls	24	23.84	0.09	0.99	730	275	0.38	inactive
2019 Ossi unit 1.0	UGA	MurchisonFalls	24	23.88	0.10	0.99	730	208	0.28	inactive
2019 Ossi unit 1.0	UGA	MurchisonFalls	24	22.68	0.19	0.94	730	430	0.59	inactive
2019 Ossi unit 1.0	UGA	MurchisonFalls	24	16.00	0.36	0.67	730	538	0.74	inactive
2019 Ossi unit 1.0	UGA	MurchisonFalls	24	22.99	0.12	0.96	730	864	1.18	inactive
2019 Ossi unit 1.0	UGA	MurchisonFalls	24	23.85	0.07	0.99	730	482	0.66	inactive
2019 Ossi unit 1.0	UGA	MurchisonFalls	24	23.70	0.11	0.99	730	422	0.58	inactive

2019 Ossi unit 1.0	UGA	MurchisonFalls	24	23.56	0.24	0.98	730	111	0.15	inactive
2019 Ossi unit 1.0	UGA	PianUpe	24	23.59	0.36	0.98	730	58	0.08	inactive
2019 Ossi unit 1.0	UGA	PianUpe	24	22.03	0.20	0.92	730	656	0.90	inactive
2019 Ossi unit 1.0	ZWE	Save	24	23.59	0.13	0.98	730	313	0.43	inactive
2019 Ossi unit 1.0	ZWE	Save	24	18.96	0.52	0.79	730	212	0.29	inactive
2019 Ossi unit 1.0	ZWE	Save	24	19.58	0.30	0.82	730	582	0.80	inactive
2019 Ossi unit 1.0	ZWE	Save	24	23.89	0.09	1.00	730	264	0.36	inactive
2019 Ossi unit 1.0	ZWE	Save	24	21.25	1.16	0.89	730	24	0.03	inactive
2019 Ossi unit 1.0	ZWE	Save	24	23.34	0.12	0.97	730	513	0.70	inactive
2019 Ossi unit 1.0	ZWE	Save	24	20.68	0.28	0.86	730	498	0.68	inactive
2019 Ossi unit 1.0	ZWE	Save	24	23.41	0.52	0.98	730	40	0.05	inactive
2019 Ossi unit 1.0	ZWE	Save	24	22.67	1.20	0.94	730	17	0.02	inactive
2019 Ossi unit 1.0	ZWE	Save	24	23.13	0.10	0.96	730	362	0.50	inactive
2019 Ossi unit 1.0	ZWE	Save	24	23.69	0.11	0.99	730	395	0.54	inactive
2019 Ossi unit 1.0	ZWE	Save	24	23.77	0.11	0.99	730	215	0.29	inactive
2019 Ossi unit 1.1	NAM	Hoanib	24	18.27	0.51	0.76	730	227	0.31	inactive
2019 Ossi unit 1.1	UGA	Kidepo	24	20.86	0.65	0.87	730	67	0.09	inactive
2019 Ossi unit 1.1	UGA	MurchisonFalls	24	22.86	0.12	0.95	730	293	0.40	inactive
2019 Ossi unit 1.1	UGA	MurchisonFalls	24	20.23	0.34	0.84	730	305	0.42	inactive
2019 Ossi unit 1.1	UGA	MurchisonFalls	24	22.30	0.22	0.93	730	533	0.73	inactive
2020 Ossi unit 1.0	COD	Garamba	24	17.33	6.42	0.72	730	2	0.00	inactive
2020 Ossi unit 1.0	COD	Garamba	24	3.60	0.14	0.15	730	457	0.63	inactive
2020 Ossi unit 1.0	COD	Garamba	24	11.37	0.52	0.47	730	473	0.65	inactive
2020 Ossi unit 1.0	COD	Garamba	24	22.75	0.11	0.95	730	332	0.45	inactive
--------------------	-----	-----------------	----	-------	------	------	-----	------	------	----------
2020 Ossi unit 1.0	KEN	Amboseli	24	19.76	0.32	0.82	730	376	0.52	inactive
2020 Ossi unit 1.0	KEN	Amboseli	24	23.75	0.17	0.99	730	152	0.21	inactive
2020 Ossi unit 1.0	KEN	Amboseli	24	23.76	0.15	0.99	730	153	0.21	inactive
2020 Ossi unit 1.0	KEN	Amboseli	24	22.76	0.18	0.95	730	509	0.70	inactive
2020 Ossi unit 1.0	KEN	Amboseli	24	23.74	0.18	0.99	730	160	0.22	inactive
2020 Ossi unit 1.0	KEN	Amboseli	24	23.52	0.37	0.98	730	57	0.08	inactive
2020 Ossi unit 1.0	KEN	Amboseli	24	23.72	0.17	0.99	730	134	0.18	inactive
2020 Ossi unit 1.0	KEN	Amboseli	24	23.38	0.42	0.97	730	55	0.08	inactive
2020 Ossi unit 1.0	KEN	IshaqbiniHirola	24	20.89	0.32	0.87	730	286	0.39	inactive
2020 Ossi unit 1.0	NAM	Damaraland	24	23.74	0.06	0.99	730	935	1.28	inactive
2020 Ossi unit 1.0	NAM	Damaraland	24	23.94	0.07	1.00	730	172	0.24	inactive
2020 Ossi unit 1.0	NAM	EtoshaHeights	24	23.92	0.02	1.00	730	804	1.10	inactive
2020 Ossi unit 1.0	NAM	EtoshaHeights	24	23.97	0.02	1.00	730	1239	1.70	active
2020 Ossi unit 1.0	NAM	EtoshaHeights	24	23.97	0.02	1.00	730	766	1.05	inactive
2020 Ossi unit 1.0	NAM	EtoshaHeights	24	22.49	0.13	0.94	730	1236	1.69	active
2020 Ossi unit 1.0	NAM	EtoshaHeights	24	23.53	0.07	0.98	730	1239	1.70	active
2020 Ossi unit 1.0	NAM	EtoshaHeights	24	23.94	0.03	1.00	730	1051	1.44	inactive
2020 Ossi unit 1.0	TZA	Serengeti	24	23.53	0.12	0.98	730	307	0.42	inactive
2020 Ossi unit 1.0	TZA	Serengeti	24	23.97	0.03	1.00	730	396	0.54	inactive
2020 Ossi unit 1.0	TZA	Serengeti	24	23.95	0.04	1.00	730	574	0.79	inactive
2020 Ossi unit 1.0	TZA	Serengeti	24	23.74	0.10	0.99	730	398	0.55	inactive
2020 Ossi unit 1.0	TZA	Serengeti	24	23.86	0.07	0.99	730	142	0.19	inactive

2020	Ossi unit 1.0	TZA	Serengeti	24	23.90	0.05	1.00	730	524	0.72	inactive
2020	Ossi unit 1.0	TZA	Serengeti	24	23.86	0.12	0.99	730	145	0.20	inactive
2020	Ossi unit 1.0	TZA	Tarangire	24	23.91	0.07	1.00	730	358	0.49	inactive
2020	Ossi unit 1.0	TZA	Tarangire	24	23.66	0.28	0.99	730	76	0.10	inactive
2020	Ossi unit 1.0	TZA	Tarangire	24	23.90	0.07	1.00	730	285	0.39	inactive
2020	Ossi unit 1.0	TZA	Tarangire	24	12.00	0.00	0.50	730	54	0.07	inactive
2020	Ossi unit 1.1	UGA	PianUpe	24	23.91	0.08	1.00	730	296	0.41	inactive
2020	Ossi unit 1.1	UGA	PianUpe	24	23.92	0.06	1.00	730	364	0.50	inactive
2020	Ossi unit 1.1	UGA	PianUpe	24	23.91	0.07	1.00	730	304	0.42	inactive
2021	Ankle bracelet 2.0	ZAF	Phinda	24	19.89	0.27	0.83	730	174	0.24	inactive
2021	Ankle bracelet 2.0	ZAF	Phinda	24	18.35	0.62	0.76	730	72	0.10	inactive
2021	Neck collar 3.3	ZAF	Phinda	24	2.67	1.08	0.11	730	2	0.00	inactive
2021	Neck collar 3.3	ZAF	Phinda	24	2.67	1.08	0.11	730	2	0.00	inactive
2021	Ossi unit 2.0	ZAF	Phinda	24	23.52	0.14	0.98	730	200	0.27	inactive
2021	Ossi unit 2.0	ZAF	Phinda	24	22.80	0.41	0.95	730	99	0.14	inactive
2021	Tail unit 1.0	ZAF	Phinda	24	16.30	1.52	0.68	730	9	0.01	inactive
2021	Tail unit 1.0	ZAF	Phinda	24	18.50	3.21	0.77	730	5	0.01	inactive
2021	Tail unit 2.0	MWI	Majete	4	1.23	0.02	0.31	730	378	0.52	inactive
2021	Tail unit 2.0	MWI	Majete	4	4.79	0.11	1.20	730	397	0.54	inactive
2021	Ear tag 4.0	NAM	EtoshaHeights	4	3.91	0.04	0.98	1095	799	0.73	active
2021	Ear tag 4.0	NAM	EtoshaHeights	4	3.79	0.12	0.95	1095	81	0.07	inactive
2021	Ear tag 4.0	NAM	EtoshaHeights	4	4.25	0.08	1.06	1095	255	0.23	inactive
2021	Ear tag 4.0	NAM	EtoshaHeights	4	4.03	0.08	1.01	1095	219	0.20	inactive

2021 Ear tag 4.0	NAM	EtoshaHeights	4	4.15	0.05	1.04	1095	799	0.73	active
2021 Ear tag 4.0	NAM	EtoshaHeights	4	4.48	0.11	1.12	1095	78	0.07	inactive
2021 Ear tag 4.0	NAM	EtoshaHeights	4	3.65	0.06	0.91	1095	426	0.39	inactive
2021 Ear tag 4.0	NAM	EtoshaHeights	4	4.17	0.08	1.04	1095	255	0.23	inactive
2021 Ear tag 4.0	UGA	MurchisonFalls	4	3.01	0.05	0.75	1095	852	0.78	active
2021 Ear tag 4.0	ZAF	Makalali	4	3.84	0.05	0.96	1095	860	0.79	active
2021 Ear tag 4.0	ZAF	Makalali	4	4.69	0.10	1.17	1095	174	0.16	inactive
2021 Ear tag 4.0	ZAF	Makalali	4	4.04	0.30	1.01	1095	27	0.02	inactive
2021 Ear tag 4.0	ZAF	Makalali	4	4.44	0.10	1.11	1095	114	0.10	inactive
2021 Ear tag 4.0	ZAF	Selati	4	4.49	0.06	1.12	1095	444	0.41	inactive
2021 Ear tag 4.0	ZAF	Selati	4	3.98	0.06	1.00	1095	444	0.41	inactive
2021 Ear tag 4.0	ZAF	Selati	4	3.67	0.12	0.92	1095	116	0.11	inactive
2021 Ear tag 4.0	ZAF	Selati	4	3.58	0.05	0.89	1095	861	0.79	active
2021 Ossi unit 1.0	TCD	Zakouma	24	23.86	0.07	0.99	730	298	0.41	inactive
2021 Ossi unit 1.0	TCD	Zakouma	24	22.00	0.32	0.92	730	281	0.38	inactive
2021 Ossi unit 1.0	TCD	Zakouma	24	23.53	0.15	0.98	730	348	0.48	inactive
2021 Ossi unit 1.0	TCD	Zakouma	24	23.77	0.05	0.99	730	500	0.68	inactive
2021 Ossi unit 1.0	TCD	Zakouma	24	22.05	0.24	0.92	730	499	0.68	inactive
2021 Ossi unit 1.0	TCD	Zakouma	24	23.91	0.04	1.00	730	499	0.68	inactive
2021 Ossi unit 1.0	TCD	Zakouma	24	23.55	0.12	0.98	730	420	0.58	inactive
2021 Ossi unit 1.0	TCD	Zakouma	24	23.92	0.04	1.00	730	617	0.85	inactive
2021 Ossi unit 1.0	TCD	Zakouma	24	22.74	0.23	0.95	730	366	0.50	inactive
2021 Ossi unit 1.1	NAM	Damaraland	24	23.62	0.34	0.98	730	62	0.08	inactive

2021 Ossi unit 1.2	NAM	Hoanib	24	23.84	0.06	0.99	730	891	1.22	active
2021 Ossi unit 1.2	NAM	Hoanib	24	23.17	0.15	0.97	730	788	1.08	inactive
2021 Ossi unit 1.2	NAM	Hoanib	24	23.93	0.05	1.00	730	650	0.89	inactive
2021 Ossi unit 1.2	NAM	Hoanib	24	23.95	0.03	1.00	730	800	1.10	inactive
2021 Ossi unit 1.2	NAM	Hoanib	24	16.00	8.03	0.67	730	2	0.00	inactive
2021 Ossi unit 1.2	NAM	Hoanib	24	23.54	0.09	0.98	730	886	1.21	active
2021 Tail unit 3.0	NAM	EtoshaHeights	24	22.20	0.16	0.92	730	874	1.20	active
2021 Tail unit 3.0	NAM	EtoshaHeights	24	23.41	0.09	0.98	730	874	1.20	active
2021 Tail unit 3.0	NAM	EtoshaHeights	24	23.01	0.21	0.96	730	252	0.35	inactive
2021 Tail unit 3.0	NAM	EtoshaHeights	24	23.34	0.10	0.97	730	874	1.20	active
2021 Tail unit 3.0	NAM	EtoshaHeights	24	18.71	0.23	0.78	730	801	1.10	active
2021 Tail unit 3.0	NAM	Hoanib	24	22.33	1.29	0.93	730	8	0.01	inactive
2021 Tail unit 3.0	NAM	Hoanib	24	21.74	0.14	0.91	730	886	1.21	active
2021 Tail unit 3.0	NAM	Hoanib	24	23.85	0.03	0.99	730	893	1.22	active
2021 Tail unit 3.0	NAM	Hoanib	24	23.53	0.03	0.98	730	891	1.22	active
2021 Tail unit 3.0	NAM	Hoanib	24	22.41	0.07	0.93	730	892	1.22	active
2021 Tail unit 3.0	ZAF	Makalali	24	17.04	0.79	0.71	730	135	0.18	inactive
2022 Ear tag 4.0	AGO	Cuatir	4	2.42	0.05	0.60	1095	379	0.35	active
2022 Ear tag 4.0	AGO	Cuatir	4	2.70	0.05	0.67	1095	379	0.35	active
2022 Ear tag 4.0	AGO	Cuatir	4	2.17	0.05	0.54	1095	379	0.35	active
2022 Ear tag 4.0	AGO	Cuatir	4	2.25	0.05	0.56	1095	379	0.35	active
2022 Ear tag 4.0	MOZ	Karingani	4	2.19	0.12	0.55	1095	60	0.05	inactive
2022 Ear tag 4.0	MOZ	Karingani	4	2.29	0.06	0.57	1095	280	0.26	inactive

2022 Ear tag 4.0	MOZ	Karingani	4	2.95	0.04	0.74	1095	481	0.44	inactive
2022 Ear tag 4.0	MOZ	Karingani	4	2.19	0.05	0.55	1095	312	0.28	inactive
2022 Ear tag 4.0	MOZ	Karingani	4	2.47	0.04	0.62	1095	652	0.60	active
2022 Ear tag 4.0	MOZ	Karingani	4	2.26	0.09	0.57	1095	91	0.08	inactive
2022 Ear tag 4.0	MOZ	Karingani	4	2.54	0.04	0.63	1095	651	0.59	active
2022 Ear tag 4.0	MOZ	Karingani	4	1.00	0.00	0.25	1095	2	0.00	inactive
2022 Ear tag 4.0	NAM	EtoshaHeights	4	2.37	0.04	0.59	1095	562	0.51	active
2022 Ear tag 4.0	NAM	EtoshaHeights	4	2.30	0.04	0.58	1095	561	0.51	active
2022 Ear tag 4.0	NAM	EtoshaHeights	4	2.73	0.04	0.68	1095	492	0.45	active
2022 Ear tag 4.0	NAM	EtoshaHeights	4	2.88	0.04	0.72	1095	493	0.45	active
2022 Ear tag 4.0	NAM	EtoshaHeights	4	2.44	0.04	0.61	1095	561	0.51	active
2022 Ear tag 4.0	NAM	EtoshaHeights	4	1.10	0.02	0.28	1095	463	0.42	active
2022 Ear tag 4.0	NAM	EtoshaHeights	4	2.24	0.04	0.56	1095	525	0.48	active
2022 Ear tag 4.0	NAM	Hoanib	4	2.29	0.04	0.57	1095	483	0.44	active
2022 Ear tag 4.0	NAM	Hoanib	4	1.80	0.04	0.45	1095	484	0.44	active
2022 Ear tag 4.0	NAM	Hoanib	4	2.46	0.04	0.62	1095	484	0.44	active
2022 Ear tag 4.0	NAM	Hoanib	4	2.55	0.04	0.64	1095	484	0.44	active
2022 Ear tag 4.0	NAM	Mangetti	4	1.96	0.04	0.49	1095	408	0.37	inactive
2022 Ear tag 4.0	NAM	Mangetti	4	3.03	0.11	0.76	1095	35	0.03	inactive
2022 Ear tag 4.0	NAM	Mangetti	4	2.36	0.07	0.59	1095	178	0.16	inactive
2022 Ear tag 4.0	NAM	Mangetti	4	2.08	0.07	0.52	1095	179	0.16	inactive
2022 Ear tag 4.0	NAM	Mangetti	4	1.79	0.04	0.45	1095	446	0.41	active
2022 Ear tag 4.0	NAM	Mangetti	4	1.41	0.03	0.35	1095	428	0.39	active

2022 Ear tag 4.0	NAM	Mangetti	4	1.87	0.05	0.47	1095	322	0.29	inactive
2022 Ear tag 4.0	NAM	Mangetti	4	2.34	0.12	0.58	1095	71	0.06	inactive
2022 Ear tag 4.0	NAM	Mangetti	4	2.40	0.09	0.60	1095	109	0.10	inactive
2022 Ear tag 4.0	NAM	Mangetti	4	1.63	0.06	0.41	1095	168	0.15	inactive
2022 Ear tag 4.0	NAM	NamibRand	4	6.14	0.07	1.53	1095	584	0.53	active
2022 Ear tag 4.0	NAM	NamibRand	4	2.11	0.28	0.53	1095	8	0.01	inactive
2022 Ear tag 4.0	NAM	NamibRand	4	5.20	0.08	1.30	1095	583	0.53	active
2022 Ear tag 4.0	NAM	NamibRand	4	2.87	0.12	0.72	1095	62	0.06	inactive
2022 Ear tag 4.0	NAM	NamibRand	4	2.70	0.04	0.68	1095	584	0.53	active
2022 Ear tag 4.0	NAM	NamibRand	4	4.54	0.07	1.14	1095	584	0.53	active
2022 Ear tag 4.0	NAM	Onduli	4	4.37	0.12	1.09	1095	323	0.29	inactive
2022 Ear tag 4.0	NAM	Onduli	4	2.86	0.04	0.72	1095	481	0.44	active
2022 Ear tag 4.0	NER	Gadabeji	4	2.98	0.06	0.74	1095	211	0.19	inactive
2022 Ear tag 4.0	NER	Gadabeji	4	2.91	0.05	0.73	1095	393	0.36	active
2022 Ear tag 4.0	NER	Gadabeji	4	2.80	0.06	0.70	1095	272	0.25	inactive
2022 Ear tag 4.0	NER	GiraffeZone	4	3.05	0.05	0.76	1095	400	0.37	active
2022 Ear tag 4.0	NER	GiraffeZone	4	2.83	0.05	0.71	1095	400	0.37	active
2022 Ear tag 4.0	SWZ	Panata	4	2.28	0.16	0.57	1095	40	0.04	inactive
2022 Ear tag 4.0	SWZ	Panata	4	2.28	0.09	0.57	1095	125	0.11	inactive
2022 Ear tag 4.0	SWZ	Umfomoti	4	1.00	0.00	0.25	1095	1	0.00	inactive
2022 Ear tag 4.0	SWZ	Umfomoti	4	2.50	0.71	0.63	1095	1	0.00	inactive
2022 Ear tag 4.0	SWZ	Umfomoti	4	2.58	0.05	0.64	1095	458	0.42	active
2022 Ear tag 4.0	SWZ	Umfomoti	4	3.16	0.04	0.79	1095	458	0.42	active

2022 Ear tag 4.0	SWZ	Umfomoti	4	2.60	0.04	0.65	1095	459	0.42	active
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.87	0.04	0.47	1095	519	0.47	inactive
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.43	0.03	0.36	1095	373	0.34	inactive
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.70	0.10	0.43	1095	58	0.05	inactive
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.38	0.10	0.34	1095	39	0.04	inactive
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.43	0.04	0.36	1095	340	0.31	inactive
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.51	0.03	0.38	1095	621	0.57	active
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.26	0.03	0.32	1095	226	0.21	inactive
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.25	0.03	0.31	1095	272	0.25	inactive
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.74	0.03	0.44	1095	604	0.55	active
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.50	0.15	0.38	1095	22	0.02	inactive
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.43	0.03	0.36	1095	406	0.37	inactive
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.55	0.04	0.39	1095	400	0.37	inactive
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.80	0.04	0.45	1095	470	0.43	inactive
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.56	0.05	0.39	1095	170	0.16	inactive
2022 Ear tag 4.0	UGA	MurchisonFalls	4	1.58	0.05	0.39	1095	249	0.23	inactive
2022 Ear tag 4.0	ZAF	Balule	4	2.66	0.08	0.67	1095	150	0.14	inactive
2022 Ear tag 4.0	ZAF	Balule	4	1.57	0.05	0.39	1095	237	0.22	inactive
2022 Ear tag 4.0	ZAF	Balule	4	2.17	0.20	0.54	1095	24	0.02	inactive
2022 Ear tag 4.0	ZAF	Ukuwela	4	2.46	0.11	0.62	1095	81	0.07	inactive
2022 Ear tag 4.0	ZWE	Hwange	4	2.58	0.04	0.65	1095	542	0.49	active
2022 Ear tag 4.0	ZWE	Hwange	4	2.09	0.04	0.52	1095	553	0.51	active
2022 Ear tag 4.0	ZWE	Hwange	4	2.31	0.04	0.58	1095	551	0.50	active

2022 Ear tag 4.0	ZWE	Hwange	4	2.02	0.04	0.50	1095	552	0.50	active
2022 Ear tag 4.0	ZWE	Hwange	4	2.47	0.04	0.62	1095	551	0.50	active
2022 Ear tag 4.0	ZWE	Hwange	4	2.67	0.04	0.67	1095	551	0.50	active
2022 Ear tag 4.0	ZWE	Hwange	4	2.07	0.04	0.52	1095	551	0.50	active
2022 Ear tag 4.0	ZWE	Hwange	4	2.03	0.04	0.51	1095	553	0.51	active
2022 Ear tag 4.0	ZWE	Hwange	4	2.62	0.25	0.65	1095	12	0.01	inactive
2022 Ear tag 4.0	ZWE	Hwange	4	2.76	0.04	0.69	1095	553	0.51	active
2022 Ear tag 4.0	ZWE	Hwange	4	2.09	0.04	0.52	1095	552	0.50	active
2022 Ear tag 4.0	ZWE	Hwange	4	1.77	0.04	0.44	1095	551	0.50	active
2022 Ear tag 4.1	NAM	EtoshaHeights	24	3.50	0.10	0.15	1095	565	0.52	active
2022 Ear tag 4.1	NAM	EtoshaHeights	24	13.46	0.14	0.56	1095	564	0.52	active
2022 Ear tag 4.1	ZAF	Balule	24	5.31	0.12	0.22	1095	283	0.26	inactive
2022 Ear tag 4.1	ZWE	Hwange	24	11.03	0.15	0.46	1095	553	0.51	active
2022 Ear tag 4.1	ZWE	Hwange	24	3.09	0.19	0.13	1095	271	0.25	inactive
2022 Tail unit 3.0	KEN	Kapiti	96	91.17	1.13	0.95	730	248	0.34	inactive
2022 Tail unit 3.0	KEN	Kapiti	96	48.49	2.80	0.51	730	146	0.20	inactive
2022 Tail unit 3.0	KEN	Maanzoni	96	49.73	2.96	0.52	730	126	0.17	inactive
2022 Tail unit 3.0	KEN	Machakos	24	18.25	0.63	0.76	730	347	0.48	active
2022 Tail unit 3.0	KEN	Machakos	96	50.67	2.97	0.53	730	140	0.19	inactive
2022 Tail unit 3.0	KEN	Mwambi	96	50.39	1.65	0.52	730	369	0.51	active
2022 Tail unit 3.0	KEN	Swara	96	52.05	2.66	0.54	730	195	0.27	inactive
2022 Tail unit 3.0	KEN	Swara	96	72.67	1.56	0.76	730	373	0.51	active
2022 Tail unit 3.0	KEN	Swara	96	63.92	2.97	0.67	730	144	0.20	inactive

2022 Tail unit 3.0	NER	Gadabeji	24	21.83	0.28	0.91	730	356	0.49	inactive
2022 Tail unit 3.0	NER	Gadabeji	24	17.75	0.79	0.74	730	117	0.16	inactive
2022 Tail unit 3.0	NER	Gadabeji	24	22.91	0.17	0.95	730	393	0.54	active
2022 Tail unit 3.0	NER	GiraffeZone	24	21.79	0.62	0.91	730	79	0.11	inactive
2022 Tail unit 3.0	NER	GiraffeZone	24	22.84	0.19	0.95	730	400	0.55	active
2023 Ear tag 4.0	AGO	Iona	4	3.12	0.21	0.78	1095	16	0.01	inactive
2023 Ear tag 4.0	AGO	Iona	4	3.06	0.07	0.76	1095	162	0.15	active
2023 Ear tag 4.0	AGO	Iona	4	2.96	0.07	0.74	1095	162	0.15	active
2023 Ear tag 4.0	AGO	Iona	4	3.24	0.06	0.81	1095	162	0.15	active
2023 Ear tag 4.0	AGO	Iona	4	3.16	0.06	0.79	1095	162	0.15	active
2023 Ear tag 4.0	AGO	Iona	4	3.48	0.05	0.87	1095	162	0.15	active
2023 Ear tag 4.0	AGO	Iona	4	2.96	0.07	0.74	1095	162	0.15	active
2023 Ear tag 4.0	AGO	Iona	4	2.88	0.07	0.72	1095	162	0.15	active
2023 Ear tag 4.0	AGO	Iona	4	2.70	0.18	0.67	1095	32	0.03	inactive
2023 Ear tag 4.0	AGO	Iona	4	3.41	0.05	0.85	1095	162	0.15	active
2023 Ear tag 4.0	AGO	Iona	4	2.93	0.33	0.73	1095	14	0.01	inactive
2023 Ear tag 4.0	AGO	Iona	4	3.39	0.22	0.85	1095	17	0.02	inactive
2023 Ear tag 4.0	AGO	Iona	4	2.42	0.27	0.60	1095	11	0.01	inactive
2023 Ear tag 4.0	MOZ	Karingani	4	2.69	0.09	0.67	1095	105	0.10	active
2023 Ear tag 4.0	MOZ	Karingani	4	2.63	0.09	0.66	1095	105	0.10	active
2023 Ear tag 4.0	MOZ	Karingani	4	6.69	0.37	1.67	1095	105	0.10	active
2023 Ear tag 4.0	MOZ	Karingani	4	2.79	0.09	0.70	1095	105	0.10	active
2023 Ear tag 4.0	MOZ	Karingani	4	2.70	0.09	0.67	1095	105	0.10	active

2023 Ear tag 4.0	MOZ	Karingani	4	2.79	0.09	0.70	1095	105	0.10	active
2023 Ear tag 4.0	MOZ	Karingani	4	3.41	0.09	0.85	1095	105	0.10	active
2023 Ear tag 4.0	MOZ	Karingani	4	2.80	0.08	0.70	1095	105	0.10	active
2023 Ear tag 4.0	MOZ	Karingani	4	2.95	0.09	0.74	1095	105	0.10	active
2023 Ear tag 4.0	MOZ	Karingani	4	2.79	0.09	0.70	1095	105	0.10	active
2023 Ear tag 4.0	MOZ	Karingani	4	2.83	0.08	0.71	1095	105	0.10	active
2023 Ear tag 4.0	MOZ	Karingani	4	2.67	0.10	0.67	1095	104	0.09	active
2023 Ear tag 4.0	MOZ	Maputo	4	2.47	0.10	0.62	1095	96	0.09	inactive
2023 Ear tag 4.0	NAM	EtoshaHeights	4	2.89	0.06	0.72	1095	187	0.17	active
2023 Ear tag 4.0	NAM	EtoshaHeights	4	2.85	0.07	0.71	1095	138	0.13	active
2023 Ear tag 4.0	NAM	EtoshaHeights	4	3.38	0.07	0.84	1095	134	0.12	active
2023 Ear tag 4.0	NAM	EtoshaHeights	4	3.56	0.06	0.89	1095	137	0.13	active
2023 Ear tag 4.0	NAM	Hoanib	4	2.81	0.08	0.70	1095	130	0.12	active
2023 Ear tag 4.0	NAM	Hoanib	4	2.80	0.08	0.70	1095	128	0.12	active
2023 Ear tag 4.0	NAM	Hoanib	4	1.00	0.00	0.25	1095	56	0.05	inactive
2023 Ear tag 4.0	NAM	Hoanib	4	3.29	0.07	0.82	1095	128	0.12	active
2023 Ear tag 4.0	NAM	Hoanib	4	3.34	0.07	0.83	1095	132	0.12	active
2023 Ear tag 4.0	NAM	NamibRand	4	6.43	0.12	1.61	1095	199	0.18	active
2023 Ear tag 4.0	NAM	NamibRand	4	5.70	0.12	1.42	1095	199	0.18	active
2023 Ear tag 4.0	NAM	NamibRand	4	6.03	0.12	1.51	1095	199	0.18	active
2023 Ear tag 4.0	NAM	NamibRand	4	5.00	0.12	1.25	1095	199	0.18	active
2023 Ear tag 4.0	NAM	NamibRand	4	5.43	0.12	1.36	1095	199	0.18	active
2023 Ear tag 4.0	NAM	Ongongo	4	2.02	0.08	0.50	1095	144	0.13	inactive

2023 Ear tag 4.0	NAM	Ongongo	4	3.21	0.06	0.80	1095	186	0.17	active
2023 Ear tag 4.0	NAM	Ongongo	4	2.22	0.08	0.56	1095	186	0.17	active
2023 Ear tag 4.0	NAM	Ongongo	4	2.59	0.11	0.65	1095	85	0.08	inactive
2023 Ear tag 4.0	RWA	Akagera	4	1.93	0.14	0.48	1095	47	0.04	active
2023 Ear tag 4.0	RWA	Akagera	4	1.93	0.14	0.48	1095	49	0.04	active
2023 Ear tag 4.0	RWA	Akagera	4	1.74	0.13	0.43	1095	47	0.04	active
2023 Ear tag 4.0	RWA	Akagera	4	2.19	0.12	0.55	1095	49	0.04	active
2023 Ear tag 4.0	RWA	Akagera	4	1.73	0.11	0.43	1095	48	0.04	active
2023 Ear tag 4.0	RWA	Akagera	4	1.79	0.13	0.45	1095	47	0.04	active
2023 Ear tag 4.0	RWA	Akagera	4	2.33	0.12	0.58	1095	48	0.04	active
2023 Ear tag 4.0	SSD	Badingilo	4	2.15	0.07	0.54	1095	166	0.15	inactive
2023 Ear tag 4.0	SSD	Badingilo	4	2.92	0.05	0.73	1095	252	0.23	active
2023 Ear tag 4.0	SSD	Badingilo	4	1.55	0.09	0.39	1095	93	0.08	inactive
2023 Ear tag 4.0	TCD	Zakouma	4	1.57	0.05	0.39	1095	268	0.24	active
2023 Ear tag 4.0	TCD	Zakouma	4	2.57	0.06	0.64	1095	268	0.24	active
2023 Ear tag 4.0	TCD	Zakouma	4	1.80	0.15	0.45	1095	9	0.01	inactive
2023 Ear tag 4.0	TCD	Zakouma	4	2.84	0.06	0.71	1095	269	0.25	active
2023 Ear tag 4.0	TCD	Zakouma	4	1.54	0.10	0.39	1095	55	0.05	inactive
2023 Ear tag 4.0	TCD	Zakouma	4	2.77	0.05	0.69	1095	267	0.24	active
2023 Ear tag 4.0	UGA	MurchisonFalls	4	1.89	0.06	0.47	1095	212	0.19	inactive
2023 Ear tag 4.0	UGA	MurchisonFalls	4	1.00	0.00	0.25	1095	5	0.00	inactive
2023 Ear tag 4.0	UGA	MurchisonFalls	4	1.00	0.00	0.25	1095	14	0.01	inactive
2023 Ear tag 4.0	UGA	MurchisonFalls	4	1.44	0.05	0.36	1095	153	0.14	inactive

2023 Ear tag 4.0	UGA	MurchisonFalls	4	1.93	0.07	0.48	1095	131	0.12	inactive
2023 Ear tag 4.0	UGA	MurchisonFalls	4	1.92	0.05	0.48	1095	232	0.21	active
2023 Ear tag 4.0	UGA	MurchisonFalls	4	1.60	0.14	0.40	1095	15	0.01	inactive
2023 Ear tag 4.0	UGA	MurchisonFalls	4	1.74	0.09	0.43	1095	66	0.06	inactive
2023 Ear tag 5.0	NAM	EtoshaHeights	12	8.70	0.18	0.72	1095	137	0.13	active
2023 Ear tag 5.0	NAM	EtoshaHeights	12	7.80	0.12	0.65	1095	187	0.17	active
2023 Ear tag 5.0	NAM	Hoanib	12	8.09	0.16	0.67	1095	128	0.12	active
2023 Ear tag 5.0	NAM	Hoanib	12	4.55	0.20	0.38	1095	132	0.12	active
2023 Ear tag 5.0	NAM	Hoanib	12	2.37	0.18	0.20	1095	132	0.12	active
2023 Ear tag 5.0	NAM	Hoanib	12	10.25	0.12	0.85	1095	128	0.12	active
2023 Ear tag 5.0	RWA	Akagera	12	2.36	0.30	0.20	1095	42	0.04	active
2023 Ear tag 5.0	RWA	Akagera	12	3.88	0.59	0.32	1095	7	0.01	inactive
2023 Ear tag 5.0	RWA	Akagera	12	3.80	0.55	0.32	1095	4	0.00	inactive
2023 Ear tag 5.0	RWA	Akagera	12	3.00	0.43	0.25	1095	22	0.02	inactive
2023 Ear tag 5.0	RWA	Akagera	12	2.54	0.28	0.21	1095	47	0.04	active
2023 Tail unit 3.0	KEN	Amboseli	24	12.82	1.38	0.53	730	43	0.06	active
2023 Tail unit 3.0	KEN	Amboseli	24	5.33	2.08	0.22	730	13	0.02	inactive
2023 Tail unit 3.0	KEN	Amboseli	24	15.25	1.07	0.64	730	51	0.07	active
2023 Tail unit 3.0	KEN	Amboseli	24	6.50	7.78	0.27	730	1	0.00	inactive
2023 Tail unit 3.0	KEN	Amboseli	24	18.85	1.33	0.79	730	27	0.04	inactive
2023 Tail unit 3.0	KEN	Amboseli	24	11.49	1.03	0.48	730	58	0.08	active
2023 Tail unit 3.0	KEN	Amboseli	24	20.89	0.62	0.87	730	59	0.08	active
2023 Tail unit 3.0	KEN	Amboseli	24	16.06	0.90	0.67	730	54	0.07	active

2023 Tail unit 3.0	KEN	Amboseli	24	12.94	1.29	0.54	730	33	0.05	active
2023 Tail unit 3.0	KEN	Amboseli	24	14.00	1.00	0.58	730	53	0.07	active
2023 Tail unit 3.0	KEN	Amboseli	24	9.07	0.97	0.38	730	52	0.07	active
2023 Tail unit 3.0	KEN	Amboseli	24	8.82	0.73	0.37	730	57	0.08	active
2023 Tail unit 3.0	KEN	Amboseli	24	8.67	0.69	0.36	730	52	0.07	active
2023 Tail unit 3.0	KEN	Mara	24	21.76	0.53	0.91	730	86	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	22.46	0.29	0.94	730	60	0.08	inactive
2023 Tail unit 3.0	KEN	Mara	24	23.44	0.21	0.98	730	87	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	22.94	0.26	0.96	730	87	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	23.53	0.21	0.98	730	86	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	22.97	0.20	0.96	730	85	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	3.00	0.00	0.13	730	0	0.00	inactive
2023 Tail unit 3.0	KEN	Mara	24	23.38	0.19	0.97	730	84	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	17.66	0.82	0.74	730	89	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	19.08	0.75	0.80	730	79	0.11	active
2023 Tail unit 3.0	KEN	Mara	24	24.58	0.67	1.02	730	89	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	23.19	0.21	0.97	730	89	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	18.45	0.77	0.77	730	85	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	23.24	0.21	0.97	730	88	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	23.67	0.20	0.99	730	88	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	16.11	0.87	0.67	730	88	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	13.75	0.88	0.57	730	86	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	23.71	0.17	0.99	730	86	0.12	active

2023 Tail unit 3.0	KEN	Mara	24	16.77	1.10	0.70	730	86	0.12	active
2023 Tail unit 3.0	KEN	Mara	24	22.32	0.51	0.93	730	56	0.08	inactive
2023 Tail unit 3.0	KEN	Mara	24	23.11	0.23	0.96	730	86	0.12	active
2023 Tail unit 3.0	SSD	Badingilo	24	23.42	0.18	0.98	730	86	0.12	inactive
2023 Tail unit 3.0	SSD	Badingilo	24	18.04	0.66	0.75	730	121	0.17	inactive
2023 Tail unit 3.0	SSD	Badingilo	24	20.47	0.59	0.85	730	99	0.14	inactive
2023 Tail unit 3.0	SSD	Badingilo	24	19.00	1.51	0.79	730	29	0.04	inactive
2023 Tail unit 3.0	SSD	Badingilo	24	19.00	1.30	0.79	730	22	0.03	inactive
2023 Tail unit 3.0	SSD	Badingilo	24	22.67	0.48	0.94	730	72	0.10	inactive
2023 Tail unit 3.0	SSD	Badingilo	24	16.20	0.72	0.68	730	117	0.16	inactive
2023 Tail unit 3.0	SSD	Badingilo	24	20.15	0.77	0.84	730	70	0.10	inactive
2023 Tail unit 3.0	SSD	Badingilo	24	22.00	0.60	0.92	730	72	0.10	inactive
2023 Tail unit 3.0	SSD	Badingilo	24	18.30	1.00	0.76	730	60	0.08	inactive
2023 Tail unit 3.0	TCD	Zakouma	24	19.17	0.76	0.80	730	72	0.10	inactive
2023 Tail unit 3.0	TCD	Zakouma	24	20.20	0.49	0.84	730	176	0.24	inactive
2023 Tail unit 3.0	TCD	Zakouma	24	3.77	0.08	0.16	730	65	0.09	inactive
2023 Tail unit 3.0	TCD	Zakouma	24	3.61	0.05	0.15	730	174	0.24	inactive
2023 Tail unit 3.0	TCD	Zakouma	24	3.60	0.04	0.15	730	265	0.36	active
2023 Tail unit 3.0	TCD	Zakouma	24	3.61	0.06	0.15	730	127	0.17	inactive
2023 Tail unit 3.0	TCD	Zakouma	24	3.40	0.07	0.14	730	157	0.22	inactive
2023 Tail unit 3.0	TCD	Zakouma	24	3.54	0.04	0.15	730	269	0.37	active