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Abstract

The conservation of threatened and rare species in remote areas often presents two
challenges: there may be unknown populations that have not yet been documented
and there is a need to identify suitable habitat to translocate individuals and help
populations recover. This is the case of the reticulated giraffe (Giraffa reticulata), a
species of high conservation priority for which: (a) there may be unknown popula-
tions in remote areas, and (b) detailed maps of suitable habitat available within its
range are lacking. We implemented a species distribution modeling (SDM) work-
flow in Google Earth Engine, combining GPS telemetry data of 31 reticulated
giraffe with Landsat 8 OLI, Advanced Land Observing Satellite Phased Arrayed L-
band Synthetic Aperture Radar, and surface ruggedness layers to predict suitable
habitat at 30-m spatial resolution across the potential range of the species. Models
had high predictive power, with a mean AUC-PR of 0.88 (SD: 0.02; range: 0.86–
0.91), mean sensitivity of 0.85 (SD: 0.04; range: 0.80–0.91), and mean precision
was 0.81 (SD: 0.02; range: 0.79–0.83). Model predictions were also consistent with
two independent validation datasets, with higher predicted suitable habitat values at
known occurrence locations than at a random set of locations (P < 0.01). Our
model predicted a total of 5519 km2 of potentially suitable habitat in Kenya,
963 km2 in Ethiopia, and 147 km2 in Somalia. Our results indicate that is possible
to combine moderate spatial resolution imagery with telemetry data to guide con-
servation programs of threatened terrestrial species. We provide a free web app
where managers can visualize and interact with the 30 m resolution map to help
guide future surveys to search for existing populations and to inform future reintro-
duction assessments. We present all analysis code as a framework that could be
adapted for other species across the globe.

Introduction

A major component of the biodiversity crisis is the extirpa-
tion of wildlife populations across ecosystems globally
(Dirzo et al., 2014). Often, the defaunation of species is so
severe that remnant populations go unnoticed for decades, or
longer, by the scientific community before the potential for
discovery (Scheffers et al., 2011). Creation and management
of protected areas, increasing connectivity across fragmented
populations, and reduction of anthropogenic pressures can, in
many cases, protect species from extinction. However,
reversing the defaunation process for many species requires
extreme measures, including species translocations, to

reestablish populations across their distributional range (Sed-
don et al., 2014).

With more than 600 mammal species on the brink of
extinction (Macdonald, 2019), the translocation of individuals
to establish new populations and secure viable metapopula-
tions is increasingly becoming an important component of
conservation management strategies (IUCN, 2013). Along
with social and economic factors, the identification of large
areas with adequate habitat to meet the metabolic needs of
translocated animals is critical to the success of transloca-
tions (IUCN, 2013). In this regard, species distribution
models (SDMs), a popular statistical tool for linking occur-
rence data with environmental variables to predict the
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potential distribution of species (Guisan & Zimmer-
mann, 2000; Guisan & Thuiller, 2005; Araújo et al., 2019),
have emerged as a valuable tool for identifying suitable areas
for conservation translocations of threatened species (Cilliers
et al., 2013; Payne & Bro-Jørgensen, 2016; Draper, Mar-
ques, & Iriondo, 2019; Bellis et al., 2020; Eyre
et al., 2022). Most analyses rely on coarse spatial resolution
explanatory variables (i.e., ∼ 1000 m); however, species
relationships with the environment can be poorly captured in
analyses with a coarse spatial grain (Mertes & Jetz, 2018),
limiting their utility to inform reintroduction assessments.

Recent studies have introduced the concept of using
unclassified multispectral satellite imagery as predictor vari-
ables to assess suitable habitat for species (Lahoz-Monfort
et al., 2010; Shirley et al., 2013; St-Louis et al., 2014;
Remelgado et al., 2018; Oeser et al., 2020; Zhang
et al., 2022). This analytical approach provides a strategy to
account for fine spatiotemporal variation in habitat character-
istics and supports fine-scale habitat suitability predictions
(He et al., 2015). Incorporating raw spectral information can
also result in more informative SDMs than using subjective
land-cover classifications as predictor variables, which are
frequently derived from satellite imagery with varying
degrees of error (Bradley & Fleishman, 2008; Oeser
et al., 2020). However, processing large amounts of satellite
data at large spatial scales requires high computing capacity.
A recent workflow for fitting SDMs in Google Earth Engine
(Crego, Stabach, & Connette, 2022), a cloud-based spatial
analysis platform that provides free access to a high-
performance computational infrastructure (Gorelick
et al., 2017), has reduced the barrier to using raw satellite
information as predictor variables for SDMs.

We explored the utility of combining satellite data within
a SDM framework in GEE for identifying potential suitable
habitat for reticulated giraffe (Giraffa reticulata) (Fennessy
et al., 2016; Winter, Fennessy, & Janke, 2018; Coimbra
et al., 2021) across its geographic range. This species is dis-
tributed mainly across northeast Kenya (O’Connor
et al., 2019; Brown et al., 2022). Like many other giraffe
populations across East, Central, and West Africa, reticulated
giraffe have experienced a sharp decline in abundance and a
contracting distribution in recent decades. As a result, reticu-
lated giraffe are listed as endangered on the IUCN Red List
(Muneza et al., 2018; Brown et al., 2022). The decline in
this species is largely due to habitat loss, fragmentation, and
degradation (Muneza et al., 2018). Recent reviews of the sta-
tus of reticulated giraffe populations indicate an increase in
estimated abundance (Brown et al., 2022) and a 14%
increase in estimated range size, mostly within northeast
Kenya (O’Connor et al., 2019). Both increases are likely due
to improved data quality, rather than an actual increase in
abundance or distribution. However, a detailed understanding
of the extent of their range and potential habitat remaining is
limited despite how critical this information is for future
conservation efforts, such as targeted surveys, corridor devel-
opment, and conservation translocations.

Translocations of different giraffe species have occurred
within and across numerous African range and non-range

states for decades (Chege, 2008; Malyjurkova et al., 2014;
Flanagan et al., 2016; Muller et al., 2020; Gippoliti,
Robovský, & Angelici, 2021). In recent years, detailed infor-
mation on best practices for giraffe translocation assessments
has been developed that includes capture, handling, transpor-
tation, and monitoring (Fennessy et al., 2022). In this study,
we aimed to model the potential habitat suitability of reticu-
lated giraffe across the species’ range by combining
moderate-resolution satellite imagery data with telemetry
data. Our fine-scale mapping of current habitat suitability
provides an important tool for determining the suitability of
areas identified for giraffe conservation translocations, guid-
ing the decision-making process. Maps will also be valuable
to guide future giraffe surveys across remote areas. This
study provides a model for how habitat suitability modeling
based on satellite imagery can provide an additional tool for
guiding surveys and conservation translocations of other
threatened species.

Materials and methods

Species telemetry data

We assembled a telemetry dataset of thirty-one (31) reticu-
lated giraffe fitted with solar-powered GPS devices in central
and northern Kenya during 2019–2020. Devices, manufac-
tured by Savannah Tracking Ltd, Kilifi, Kenya, were pro-
grammed to collect hourly fixes with an average positional
accuracy of 12.8 m (Hart et al., 2020). Animals were tracked
for an average of 209 days (range: 8–462). As part of the
data cleaning processes, aberrant or abnormal GPS fixes
were removed following Bjørneraas et al. (2010). We also
excluded all points collected by devices up to 24 h after the
animal capture and 24 h before the last recorded location
(Northrup, Anderson, & Wittemyer, 2014). To reduce tempo-
ral autocorrelation, we randomly selected one fix per day for
each individual (Holloway & Miller, 2017; Oeser
et al., 2020; McCabe et al., 2021). We set the spatial resolu-
tion of our analysis to 30 m, rarifying the telemetry dataset
further to maintain a standard of one observation per pixel,
resulting in 5778 presence points for modeling (Veloz, 2009;
Boria et al., 2014; Fourcade et al., 2014).

Predictor variables

We modeled giraffe habitat suitability using atmospherically
corrected Landsat 8 OLI surface reflectance (SR) collection
2, Advanced Land Observing Satellite (ALOS) Phased
Arrayed L-band Synthetic Aperture Radar (PALSAR) infor-
mation, and surface roughness as predictor variables. We fil-
tered the Landsat 8 SR collection from the GEE catalog to
retain only images that overlapped our area of interest, and
which were collected from 01 January 2019 to 31 December
2020, to match the temporal interval of the telemetry data.
Only images with <20% cloud cover were considered for
analyses. For each of the 482 resulting Landsat-8 images,
we masked out low-quality pixels (i.e., clouds, cloud
shadows, and saturated pixels) using a cloud mask and
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rescaled pixel values with the appropriate scaling factors
(USGS, 2022). We selected the blue, red, green, near-
infrared (NIR), shortwave infrared 1 (SWIR1), and short-
wave infrared 2 (SWIR2) bands for analysis. For each
image, we also derived two indices to account for key eco-
logical interactions more specifically. First, we calculated the

Normalized Difference Vegetation Index NDVI : NIR�Redð Þ
NIRþRedð Þ

� �
.

Vegetation indexes derived from satellite imagery have been
proved useful in predicting habitat use of large herbivores in
general and giraffe in particular (Ryan et al., 2012; Borowik
et al., 2013; Pettorelli et al., 2014; Tyrrell, Russell, & West-
ern, 2017; Brown & Bolger, 2020; Crego et al., 2020).
Second, we derived a Bare Soil Index (BSI;

RedþSWIR1ð Þ� NIRþBlueð Þ
RedþSWIR1ð Þþ NIRþBlueð Þ

� �
; Rikimaru, Roy, & Miyatake, 2002).

We incorporated BSI based on the assumption that areas
overgrazed with livestock will present high bare soil cover
(Figure S1: Appendix S1) and are likely to be avoided by
giraffes when livestock densities are high (Crego
et al., 2020). We created a composite for each band by cal-
culating the median pixel value of all unmasked pixels
across all Landsat images in our filtered time series. Simi-
larly, we created a second composite for each band with the
standard deviation of all unmasked pixels to account for the
temporal variability in spectral reflectance.

Our models also incorporated ALOS-PALSAR HH and HV
polarization data because of their recognized value for identify-
ing woody vegetation (Shimada et al., 2014), the main source
of forage for giraffe (Kartzinel et al., 2019; Brown & Bol-
ger, 2020). We filtered the ALOS-PALSAR dataset to retain
mosaics for 2019–2020 and calculated the median pixel value
for each pixel of the HH and HV bands. We also calculated sur-
face ruggedness, an important variable determining suitable
habitat for ungulates (Killeen et al., 2014). For this, we
obtained elevation data from the 30 m Shuttle Radar Topogra-
phy Mission (SRTM; Farr et al., 2007) and calculated the stan-
dard deviation of elevation in a moving window of a 5-pixel
radius. Rugged terrain would show a greater difference in ele-
vation among neighboring pixels, resulting in higher standard
deviations, whereas areas with lower standard deviations
(closer to 0) represent smoother terrain.

From the list of covariables, we masked out all pixels con-
taining permanent water using the global water surface product
(Pekel et al., 2016). The final multi-band image for species dis-
tribution modeling consisted of 18 bands: median composites
for Landsat-8 bands 2 to 7, NDVI and BSI, standard deviation
composites for each of these bands, median composites for
ALOS-PALSAR HH and HV bands, and surface ruggedness.
All giraffe tracking data and the covariates incorporated for
modeling purposes can be visualized directly in GEE (https://
gcfspatial.users.earthengine.app/view/reticulatedgiraffesdm).

Model fitting and k-fold spatial block
cross-validation

We modeled potential habitat suitability for reticulated giraffe
using random forest classifiers and a repeated (5-fold) spatial

block cross-validation technique (Roberts et al., 2017; Valavi
et al., 2019). We defined 10 × 10 km spatial blocks and ran-
domly split the blocks five times, with 70% of each split
used for model training and 30% for model validation ensur-
ing spatial independence between training and validation
datasets. Blocks were created in an area defined by the
known geographic range as first identified by O’Connor
et al. (2019). At each iteration, occurrence points within the
set of training blocks were used for model training. The
remaining occurrence points were used for validation. We
generated an equal number of pseudo-absences as occurrence
data for each of the five datasets used for model fitting and
for model validation given random forest performance is bet-
ter with balanced datasets (Evans et al., 2011; Barbet-Massin
et al., 2012; Sillero et al., 2021). We limited the area to cre-
ate pseudo-absences at distances larger than 100 m from any
occurrence point (Figure S2: Appendix S1). Five replicates
have been shown to be sufficient for datasets with >1000
and <10 000 pseudo-absences (Barbet-Massin et al., 2012).
We fitted a random forest model (500 trees) to each individ-
ual training dataset. We examined the relative importance of
each of the 18 covariates in predicting habitat suitability by
calculating the average proportional contribution of each
band indicated by the GINI index from across the five sepa-
rate estimates produced by each random forest classifier.

We made separate predictions for each of the five itera-
tions of model fitting and generated a final map by calculat-
ing the mean pixel value from across the five model outputs.
We also estimated pixel-specific standard deviation from the
five model iterations as a measure of model prediction uncer-
tainty. We assessed model accuracy for each model iteration
by calculating the threshold-independent Area Under the
Precision-Recall Curve (AUC-PR; Sofaer, Hoeting, & Jarne-
vich, 2019). The AUC-PR ranges from 0 to 1, with 1 indi-
cating a perfect prediction of presence data, and the
prevalence of presence locations in the dataset (0.5 for a bal-
anced dataset) indicating predictions are not better than ran-
dom (Sofaer, Hoeting, & Jarnevich, 2019). This metric is not
influenced by the number of absences and provides a better
indication of the ability of the model to correctly predict
presence locations (Sofaer, Hoeting, & Jarnevich, 2019).
Additionally, we calculated the threshold-dependent sensitiv-
ity (the true positivity rate) and precision (true positives
divided by the sum of true positives and false positives) for
each model iteration (Fielding & Bell, 1997) as additional
information on model performance. We calculated the thresh-
old habitat suitability value that maximized the sum of sensi-
tivity and specificity (Liu, Newell, & White, 2016). We
reclassified the final averaged habitat suitability map into a
binary potential distribution map using the average threshold
among the five individual models. We used this binary distri-
bution model to quantify potential suitable habitat within the
‘known’ and ‘possible’ reticulated giraffe range, as identified
by O’Connor et al. (2019), and an extra 50 km buffer to the
north, east, and west of this distributional range to include
areas where giraffe potentially occur in Somalia and Ethio-
pia. We did not extend the buffer to the south as those areas
correspond to the known range of the Masai giraffe (G.
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tippelskirchi) (Fennessy et al., 2016; Winter, Fennessy, &
Janke, 2018; Coimbra et al., 2021). All model scripts are
available at: https://code.earthengine.google.com/?accept_
repo=users/gcfspatial/RetGirManuscript.

Independent model validation

We further assessed model accuracy using two independent
reticulated giraffe occurrence datasets. First, we downloaded
all reticulated giraffe i-Naturalist records from the Global
Biodiversity Information Facility (GBIF) dataset (GBIF.org
(28 July 2022); https://doi.org/10.15468/dl.vrr7r8) from
2019 to 2020, matching the dates of all remote sensing
data included in our analyses. For each observation, we
inspected the metadata and associated photos to ensure all
observations were correctly identified, resulting in 36
records for model validation. Second, we incorporated
giraffe observations recorded during the months of May
2015 as part of the Great Elephant Census (GEC) aerial
survey across Laikipia and Samburu Counties, Kenya
(Chase et al., 2016). Although the GEC was designed spe-
cifically to count African savanna elephant (Loxodonta afri-
cana), other large mammal sightings were also recorded,
including all giraffe species. Animals were counted within a
150–200 m strip width on each side of a plane. Coordinate
locations of the plane were recorded at each observation.
Further details on the standardized protocol used during the
GEC are provided in Chase et al. (2016). The GEC dataset
for model validation consisted of 335 reticulated giraffe
records. We used our fitted models to predict reticulated
giraffe distribution using a 2-year composite of Landsat-8
with images from 1 year before and after the survey month
(May 2015) and ALOS-PALSAR annual composites for
2014 and 2015.

Given that the reticulated giraffe is a taxon of conserva-
tion concern, the coordinates reported in GBIF are associated
with uncertainty for security reasons. To account for the lack
of precision in the coordinates of both the GBIF and GEC
data, compared to the 30 m resolution of model predictions,
we buffered each giraffe record by a 100 m radius. We then
extracted the mean habitat suitability prediction within each
buffer polygon from the final averaged habitat suitability
index (HSI) model output. We then tested whether HSI at
the observed giraffe locations was higher than HSI at ran-
dom locations. We hypothesized that model predictions were
a good representation of reticulated giraffe habitat if the pre-
dicted HSI at the actual animal locations was significantly
higher than random locations. To obtain a good representa-
tion of background HSI across the area, we used 1000 ran-
dom locations. We created random points within the
bounding box (maximum extent of all validation points) plus
a 1000 m buffer. This process was repeated for both valida-
tion datasets (GBIF and GEC) to generate separate sets of
random points within the known giraffe distribution. For
each random location, we followed the same procedure as
with the validation points for calculating the mean habitat
suitability within a surrounding 100 m buffer. We then tested
whether mean habitat suitability for the validation points was

higher than for the random points, using a Welch’s t-test due
to the heteroscedasticity of both datasets. We also calculated
the same tests using 100, 250, and 500 random points to
ensure that results were not dependent on the number of ran-
dom locations selected (see Table S1: Appendix S1). Addi-
tionally, we calculated sensitivity, precision, and AUC-PR
for both independent validation datasets. For calculating sen-
sitivity and precision, we used the same threshold than
before. Because we lack reliable absence data, and to main-
tain a balanced testing dataset, we calculated precision and
AUC-PR 100 times, each time selecting a new random set
of absence points equal to the number of presence points
from the previously created 1000 random points. We
reported precision and AUC-PR mean and standard deviation
from the 100 iterations. The validation analysis was con-
ducted in R (R Core Team, 2022). The R code used for con-
ducting the analyses is provided in Appendix S2.

Results

Model runs were consistent, with low standard deviation
among individual model predictions (Fig. 1). Models also
exhibited high predictive power. The mean AUC-PR for the
five model iterations was 0.88 (SD: 0.02; range: 0.86–0.91),
mean sensitivity was 0.85 (SD: 0.04; range: 0.80–0.91), and
mean precision was 0.81 (SD: 0.02; range: 0.79–0.83). Bare
soil was the most influential covariate on average across
model iterations (8.32%), followed by NDVI (7.95%), the
Landsat 8 blue band (7.63%), and surface ruggedness
(6.85%). The contributions of other covariates ranged from
3.27 to 6.08% (Fig. 2).

On average, the HSI for the independent GBIF dataset
was higher than the HSI of 1,000 random locations (Mean
GBIF HSI = 0.61; mean random locations = 0.49; P-
value = 0.003; Fig. 3a). Sensitivity was 0.77, mean precision
was 0.58 (SD: 0.03), and mean AUC-PR was 0.66 (SD:
0.04). Similarly, the mean HSI for the independent GEC
dataset was higher than the mean HSI of a 1,000 random set
of locations (mean GEC HSI = 0.51; mean random
locations = 0.41; P < 0.001; Fig. 3b). Sensitivity was 0.60,
mean precision was 0.60 (SD: 0.01), and mean AUC-PR
was 0.47 (SD: 0.01).

Model predictions highlight large areas of suitable habitat
for reticulated giraffe across the western section of the poten-
tial distribution in Kenya (Fig. 1). Specifically, the binary
model predicted 4736 km2 of potential suitable habitat within
the ‘known’ Kenyan range (19.7%) and 783 km2 of potential
suitable habitat within the possible Kenyan range (11.8%;
Fig. 4). Suitable habitat was also identified along the north-
west border between Kenya and Ethiopia, and along much
of the border between Kenya and Somalia. The binary model
also predicted 963 km2 in Ethiopia (38.4% of the Ethiopian
possible range; Fig. 4) and 147 km2 in Somalia as potential
suitable habitat (18.9% of the Somalia possible range;
Fig. 4). Finally, 1418 km2 of potential suitable habitat was
identified within the 50 km buffer from the potential range
into the west of Kenya, further north in Ethiopia, and further
east into Somalia (Fig. 4).
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Discussion

Habitat suitability models derived from moderate-resolution
satellite data can be valuable tools for conservation manage-
ment. We modeled habitat suitability for the entire range of
the endangered reticulated giraffe at 30 m spatial resolution.
We obtained high average model accuracy from across five

iterations of model fitting with different partitions of training
and validation data (AUC-PR > 0.86). Predicted habitat suit-
ability was higher for known giraffe locations than on ran-
dom locations on two independent giraffe occurrence
datasets. This study demonstrates the potential of combining
tracking data with moderate spatial resolution satellite imag-
ery to model habitat suitability at large spatial scales
( ∼ 378 400 km2) to guide conservation actions of endan-
gered species. The method relies on free imagery, free soft-
ware, with results viewable on a free web application
(https://gcfspatial.users.earthengine.app/view/reticulatedgiraffe
sdm), opening the opportunity to work collaboratively with
governments and institutions and expand on similar research
worldwide.

Species distribution models combined with coarse resolu-
tion predictor variables, generally climatic variables, have
been used extensively to identify suitable habitats to guide
translocations or surveys (e.g., Cilliers et al., 2013; Payne &
Bro-Jørgensen, 2016; Eyre et al., 2022). Such climatic vari-
ables are valuable for purposes such as understanding how
climate change can affect suitable habitats at large spatial
scales (Bellis et al., 2020). However, coarse-resolution maps
do not necessarily provide the fine-scale information required
to support translocation assessments by identifying the distri-
bution and spatial arrangement of suitable habitat. Our
modeling framework combining moderate-resolution satellite

Figure 1 Mean (left) and standard deviation (right) of habitat suitability predictions from 5-fold model fitting for reticulated giraffe at 30 m

spatial resolution using 2019–2020 Landsat-8, ALOS-PALSAR composites, and surface ruggedness as predictor variables. The insets (colored

boxed) show finer details of habitat suitability predictions.

Figure 2 Mean (+1 SD) random forest variable importance percent-

age contribution from five-fold model fitting. Higher values indicate

a greater ability of the variable to separate suitable from unsuitable

habitat based on the training dataset.
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imagery with telemetry data can be a valuable tool for guid-
ing future translocations of reticulated giraffe or for targeting
future surveys to locate groups of animals persisting in
remote or less-studied areas. Moreover, the visualization of
patches of suitable habitat can help identify and prioritize
areas for reintroducing individuals that maintain linkages, or
habitat corridors, to known populations. This would help
ensure the necessary connectivity and gene flow between
known populations and future introduced populations to
maintain genetic variation for the species (Willi et al., 2022).
Similarly, maps can help mitigate negative impacts by identi-
fying locations where corridors will be needed to mitigate
fragmentation by planned linear infrastructure, such as the
Lamu Port–South Sudan–Ethiopia Transport (LAPSSET) cor-
ridor program, that are and will be built across the reticu-
lated giraffe range (Aalders et al., 2021).

When predicting a different year (2015) from which the
model was trained (2019–2020), independent validation
showed the capacity of the model to predict areas used by
giraffe, with higher predicted HSI in known giraffe locations
than random locations (Fig. 3b). This result supports the idea
that our model can be used to predict habitat suitability on
the year in which a translocation is planned, accounting for
temporal variability in habitat suitability. The code provided
could be edited to incorporate satellite data from different
years of interest. Predicting across long spans of time to
assess changes in suitable habitat (e.g., Betts et al., 2022)
will be limited by the ALOS-PALSAR dataset in our case,

Figure 3 Independent model validation. Map A shows predicted habitat suitability for 2019–2020 and the locations of 36 giraffe records

obtained from Global Biodiversity Information Facility (GBIF). Map B shows predicted habitat suitability for 2015 and the 335 giraffe records

obtained from the Great Elephant Census (GEC). Histograms show mean habitat suitability values distribution for each independent valida-

tion dataset and 1000 random locations (see methods description on how random locations were created).

Figure 4 Potential habitat suitability predictions in a binary format

(suitable/non-suitable) for reticulated giraffe at 30 m spatial resolu-

tion for 2019–2020. The binary map was created based on the

average threshold that maximized the sum of sensitivity and speci-

ficity from across a five-fold model fitting with different training-

validation data splits.
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for which annual composites start in 2007. Other studies
using Landsat imagery as predictor variables in SDMs have
used coefficients to harmonize the different Landsat sensors
(Roy et al., 2016; Betts et al., 2022). However, such types
of analysis have only been done in forest ecosystems. Spec-
tral variability in images due to vegetation structure variation
across savanna ecosystems makes analyses using multispec-
tral satellite imagery more challenging (Ribeiro et al., 2020),
but we foresee this as an area of potential future develop-
ment to improve habitat suitability predictions across these
ecosystems.

In the random forest classifiers, no covariable presented a
clear higher importance in distinguishing suitable from unsui-
table habitat. As expected, given the effect that foraging
availability and livestock abundance have on giraffe occur-
rence (Tyrrell, Russell, & Western, 2017; Brown & Bol-
ger, 2020; Crego et al., 2020), our spectral indices
attempting to capture these impacts, NDVI and BSI, were
the most important variables across the random forest
models. The Landsat blue band was also important, also
expected given its spectral response to soil characteristics
(Rikimaru, Roy, & Miyatake, 2002). This suggests vegetation
availability and soil degradation are important factors deter-
mining habitat suitability. Surface ruggedness was also iden-
tified as an important variable in the model, likely
corresponding with the tendency for giraffe tracking loca-
tions to fall in relatively smoother terrain. Despite the focus
of our modeling technique on maximizing the predictive
accuracy of the models rather than understanding the drivers
of giraffe habitat selection (Araújo et al., 2019), the variable
importance results can be valuable for future studies that aim
to investigate the specific roles that soil and vegetation char-
acteristics have on the ecology of reticulated giraffe.

Biological interactions can play important roles in deter-
mining habitat use by giraffe and importantly, the outcome
of a conservation translocation (Muller et al., 2020; Fennessy
et al., 2022). Incorporating biological interactions into habitat
suitability modeling frameworks, however, is challenging
(Kissling et al., 2012). The inclusion of BSI in our model
indirectly accounted for the negative effect that high live-
stock abundance can have on reticulated giraffe occurrence
(Crego et al., 2020). However, our models do not account
for the effect of predators, competition with other herbivores,
illegal hunting, traffic levels on roads, and other effects that
can affect giraffe habitat (e.g., Valeix et al., 2009;
Muller, 2018). When it is not possible to include such bio-
logical interaction variables, caution is needed when inter-
preting habitat suitability model predictions. For instance,
model predictions at 30 m resolution can identify small
patches of suitable habitat in a matrix of small farming
lands. Despite the small patch appearing suitable in our pre-
dictive map, giraffe rarely would use such habitats due to
the overall presence of human activities and their fragmented
nature (Fig. 5).

The Twiga Tracker Initiative (https://giraffeconservation.
org/programmes/twiga-tracker/) is one of the most ambitious
programs in animal movement, aiming to tag and monitor
individuals of all giraffe species across the diverse ecological

gradient that characterize their broad range. Despite that, we
were only able to include 31 reticulated giraffe individuals
in the analysis, all of which occurred in a relatively small
area compared to the species range (Fig. 1). There is a possi-
bility that the spatial locations of tagged individuals do not
reflect the potential variability in space use across differences
in habitat conditions, sex, group status, and animal personali-
ties (Bercovitch & Deacon, 2015; Brown & Bolger, 2020).
This can limit the predictive power of the model in areas
away from the locations of the tagged individuals. It is also
possible that giraffes in certain areas are forced to use poor-
quality habitats due to anthropogenic pressures. This could
explain the average lower suitable index value for the GEC-
independent dataset (Fig. 3b) that covers an area larger than
the area covered by the tracking data used to train the
models. While future tagging outputs could provide further
information to improve the models, it is also critical to vali-
date model outcomes in the field (e.g., through surveys;
Draper, Marques, & Iriondo, 2019) and to undertake inde-
pendent site-specific translocation assessments before moving
animals (Fennessy et al., 2022). Moreover, recent new devel-
opments in random forests implementations in SDMs for
presence-only datasets show the potential for improving
model performance and predictions (Valavi et al., 2021,
2022). This development for implementing down-sampling
techniques that allow to use thousands of background points
while subsampling them at each tree in the random forests
to maintain a balanced dataset with the presence data is still
not available in GEE. We hope our work with GEE and
SDMs will motivate Google developers to implement novel
developments in machine learning algorithms.

Figure 5 Comparison between the Google Earth Engine satellite

base map imagery (a) and predicted suitable habitat for reticulated

giraffe (b) across a gradient of anthropogenic disturbance. Frag-

mented rangelands can clearly be identified on the left side of the

image where predicted habitat suitability is low, compared to the

right side of the image, where predicted habitat suitability is high.

The image captures a subset of Laikipia County, Kenya.
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Our modeling framework combining moderate spatial reso-
lution imagery with telemetry data can be a valuable tool to
obtain detailed habitat suitability information. The code and
resulting data will be an important tool to complement the com-
plex process of planning future conservation translocations of
giraffe and other threatened species. Moreover, the free web
application with the 30-m resolution maps can also inform
future survey efforts to increase knowledge on isolated popula-
tions of undersurveyed species and guide connectivity projects.
Indeed, the maps are being used to identify suitable areas to sur-
vey giraffe in Ethiopia in a collaboration with the Ethiopian
Wildlife Conservation Authority (EWCA). This work is con-
tributing to the development of the first-ever National Giraffe
Conservation Strategy of Ethiopia. We hope that this work will
promote the continuation of further model developments on the
other giraffe species and other threatened species to guide
future conservation efforts.
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Schröder, B., Thuiller, W., Warton, D.I., Wintle, B.A.,
Hartig, F. & Dormann, C.F. (2017). Cross-validation
strategies for data with temporal, spatial, hierarchical, or
phylogenetic structure. Ecography 40, 913–929.

Roy, D.P., Kovalskyy, V., Zhang, H.K., Vermote, E.F., Yan,
L., Kumar, S.S. & Egorov, A. (2016). Characterization of
Landsat-7 to Landsat-8 reflective wavelength and
normalized difference vegetation index continuity. Remote
Sens. Environ. 185, 57–70.

Ryan, S.J., Cross, P.C., Winnie, J., Hay, C., Bowers, J. &
Getz, W.M. (2012). The utility of normalized difference
vegetation index for predicting African buffalo forage
quality. J. Wildl. Manage. 76, 1499–1508.

Scheffers, B.R., Yong, D.L., Harris, J.B.C., Giam, X. &
Sodhi, N.S. (2011). The World’s rediscovered species: back
from the brink? PLoS One 6, e22531.

Seddon, P.J., Griffiths, C.J., Soorae, P.S. & Armstrong, D.P.
(2014). Reversing defaunation: restoring species in a
changing world. Science 8, 406–412.

Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi,
T., Thapa, R. & Lucas, R. (2014). New global forest/non-
forest maps from ALOS PALSAR data (2007–2010).
Remote Sens. Environ. 155, 13–31.

Shirley, S.M., Yang, Z., Hutchinson, R.A., Alexander, J.D.,
McGarigal, K. & Betts, M.G. (2013). Species distribution
modelling for the people: unclassified Landsat TM imagery
predicts bird occurrence at fine resolutions. Divers. Distrib.
19, 855–866.

Sillero, N., Arenas-Castro, S., Enriquez-Urzelai, U., Vale,
C.G., Sousa-Guedes, D., Martı́nez-Freirı́a, F., Real, R. &
Barbosa, A.M. (2021). Want to model a species niche? A
step-by-step guideline on correlative ecological niche
modelling. Ecol. Model. 456, 109671.

Sofaer, H.R., Hoeting, J.A. & Jarnevich, C.S. (2019). The area
under the precision-recall curve as a performance metric for
rare binary events. Methods Ecol. Evol. 10, 565–577.

St-Louis, V., Pidgeon, A.M., Kuemmerle, T., Sonnenschein,
R., Radeloff, V.C., Clayton, M.K., Locke, B.A., Bash, D. &
Hostert, P. (2014). Modelling avian biodiversity using raw,
unclassified satellite imagery. Philos. Trans. R. Soc. Lond. B
Biol. Sci. 369, 20130197.

10 Animal Conservation �� (2023) ��–�� ª 2023 Zoological Society of London.

Reticulated giraffe 30 m habitat suitability model R. D. Crego et al.



Tyrrell, P., Russell, S. & Western, D. (2017). Seasonal
movements of wildlife and livestock in a heterogenous pastoral
landscape: implications for coexistence and community based
conservation. Glob. Ecol. Conserv. 12, 59–72.

USGS (2022). https://www.usgs.gov/landsat-missions/landsat-
collection-2-level-2-science-products. Accessed: 20 June
2022.

Valavi, R., Elith, J., Lahoz-Monfort, J.J. & Guillera-Arroita, G.
(2019). block CV: an r package for generating spatially or
environmentally separated folds for k-fold cross-validation
of species distribution models. Methods Ecol. Evol. 10,
225–232.

Valavi, R., Elith, J., Lahoz-Monfort, J.J. & Guillera-Arroita, G.
(2021). Modelling species presence-only data with random
forests. Ecography 44, 1731–1742.

Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J.J. & Elith, J.
(2022). Predictive performance of presence-only species
distribution models: a benchmark study with reproducible
code. Ecol. Monogr. 92, e01486.

Valeix, M., Fritz, H., Loveridge, A.J., Davidson, Z., Hunt, J.E.,
Murindagomo, F. & Macdonald, D.W. (2009). Does the risk of
encountering lions influence African herbivore behaviour at
waterholes? Behav. Ecol. Sociobiol. 63, 1483–1494.

Veloz, S.D. (2009). Spatially autocorrelated sampling falsely
inflates measures of accuracy for presence-only niche
models. J. Biogeogr. 36, 2290–2299.

Willi, Y., Kristensen, T.N., Sgrò, C.M., Weeks, A.R., Ørsted,
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Figure S1. Average bare soil index across different land
uses derived from a cloud-free Landsat-8 composite used for
modeling reticulated giraffe habitat suitability.

Figure S2. Google Earth Engine screenshots showing: (a)
the area defined to create pseudo-absences, (b) an example
of a random split of 10 × 10 km blocks – 70% for model
fitting (blue) and 30% for model validation (red), (c) an
example set of points used for model training (green dots),
and a set of points used for model validation (black dots),
(d) a zoomed-in section of the block, training, and validation
datasets.

Table S1. Mean predicted habitat suitability index (HSI)
for the two independent datasets used for model validation
and for 100, 250, and 500 random points.
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